

inventcom

FANUCDEVELOPER: DESCRIPTION AND USAGE

Inventcom · www.inventcom.net · info@inventcom.net

Version: March 2018 V1.2

Page 1 of 6

FANUC DRIVER DEVELOPMENT KIT
This driver development kit enables you to create your own driver for Focas enabled Fanuc

controllers within minutes with minimal effort. You can quickly implement any function from the

Fanuc Focas Library and output data needed for your projects.

DESCRIPTION

The kit was built with Visual Studio 2017, you can use Visual Studio Community 2017 (free). It also

was tested and can be used with other versions of Visual Studio >= 2008. Instructions can be

found here. The kit contains 3 pre-built example functions from the Fanuc Focas Library. You can

modify them or add your own items:

 Machine state information (uses cnc_statinfo)

 Parameter value (uses cnc_rdparam)

 PMC address value (uses pmc_rdpmcrng)

LICENSING

The driver development requires the most recent version of CNCnetPDM. It also works with a

free license. However, in this mode you only get output for the first function in your DLL. With a

valid license you are able to output the result of up to 30 functions per reading cycle, see licensing

for details.

SETUP

 If you’re using Visual Studio Community 2017 make sure that the following components are

installed: Desktop Development with C++, Windows XP support for C++ and MFC and ATL

support

 Extract all contents of fanucdeveloper.zip to a folder on your PC and navigate to this folder

 Copy customfanuc.dll from this folder to the directory where CNCnetPDM.exe is installed

 With Visual Studio 2017 simply open the project myfanuc.sln, for other versions of Visual

Studio follow these instructions

 Compile the project once and make sure that you don’t get errors.

USAGE

You only have to modify the content of file myfanuc.cpp to implement any function from the

Fanuc Focas Library. Select Solution Explorer, open section Source Files and double click

myfanuc.cpp.

https://www.inventcom.net/
mailto:info@inventcom.net
https://www.inventcom.net/support/fanuc/driver-development-kit
https://www.inventcom.net/fanuc-focas-library/general/flist_all
https://www.visualstudio.com/
https://www.inventcom.net/support/your-device-driver/create-driver-with-different-compilers
https://www.inventcom.net/fanuc-focas-library/general/flist_all
https://www.inventcom.net/cncnetpdm/general/download
https://www.inventcom.net/cncnetpdm/general/licenses
https://www.visualstudio.com/
https://www.inventcom.net/support/your-device-driver/create-driver-with-different-compilers

inventcom

FANUCDEVELOPER: DESCRIPTION AND USAGE

Inventcom · www.inventcom.net · info@inventcom.net

Version: March 2018 V1.2

Page 2 of 6

INI FILE

Your device driver uses an own INI file that is automatically created by customfanuc.dll if it doesn’t

exist. It enables you to activate/deactivate specific items and define Tag names for them. It always

automatically gets the name customfanuc with the machine number added (as defined in

CNCnetPDM.ini) e.g. customfanuc_1000.ini for device number 1000.

If it doesn’t exist customfanuc.dll creates it with 3 activated entries and one deactivated template

that can be used for new functions.

The INI file contains numeric section identifiers. Each identifier contains information about an

acquired item. For example

[2]

Active = 1

Name = AUTNR

Comment = Automatic mode number

Output section = 1

Means item number 2 should be acquired (Active = 1) and its Tag name is AUTNR. Tag names can

have up to 5 characters. Output acquired by this function should be added to section 1, you can

use up to 3 sections (1,2 or 3). Each section can contain up to 256 characters. For long items e.g.

axis position it is recommended to use an own section.

Once the INI file is created its content can be manually modified at runtime without the need to

restart the main service.

ADJUST ITEMS

Items can be adjusted and added in class DeviceReadExt. Most of the Fanuc Focas function calls

use a specific structure that is mentioned in the documentation. For example cnc_statinfo uses

structure ODBST. So, the first thing you have to do is to include this structure and assign a name

for it e.g.

ODBST odbst; // Machine State structure

FIG 1: Include and name structure

Now you can call the function with

ret = cnc_statinfo(hFanuc, &odbst); // Machine status
if (!ret) // If it worked

sprintf(m_stat.cReturn, "%d", odbst.aut);

https://www.inventcom.net/
mailto:info@inventcom.net

inventcom

FANUCDEVELOPER: DESCRIPTION AND USAGE

Inventcom · www.inventcom.net · info@inventcom.net

Version: March 2018 V1.2

Page 3 of 6

FIG 2: Execute function

cnc_statinfo is the function, hFanuc is the handle and &odbst is a pointer to structure ODBST.

If (!ret) means: Perform the following commands if the function does NOT return anything else

than EW_OK (0).

If successful you can use the values returned by the function call to output them or perform

additional calculations. The values are returned as structure members. ODBST is defined as

typedef struct odbst {
 short hdck ; /* handl retrace status */
 short tmmode ; /* T/M mode */
 short aut ; /* selected automatic mode */
 short run ; /* running status */
 short motion ; /* axis, dwell status */
 short mstb ; /* m, s, t, b status */
 short emergency ; /* emergency stop status */
 short alarm ; /* alarm status */
 short edit ; /* editting status */

} ODBST ;

FIG 3: Members of structure ODBST

In this example these values can be directly used as odbst.aut or odbst.run a.s.o in your program.

The result of a successful function call is copied to mstat.cReturn which is automatically read by

customfanuc.dll and added to the output section you defined.

Output sections contain one or more items in the form of tag name + pipe delimiter | + output

value. You can add the result from multiple queries to a single section. 3 sections are available

each one can contain up to 256 characters.

The sections are read by the main service which then creates database records or text files that

contain GROUP_ID, READING_TIME, DEVICE_NUMBER, TAG_CODE, TAG_DATA,

CREATION_DATE and PROCESSING_FLAG for each item acquired e.g.:

10000000001 2017-06-29 16:38:28.000 1001 AUTNR 1 2017-06-29

16:38:28.000 2

FIG 4: Output of records with tags and values

https://www.inventcom.net/
mailto:info@inventcom.net

inventcom

FANUCDEVELOPER: DESCRIPTION AND USAGE

Inventcom · www.inventcom.net · info@inventcom.net

Version: March 2018 V1.2

Page 4 of 6

ADD ITEMS

It is highly recommended that you make a backup of file myfanuc.cpp (simply copy and paste it

into the same folder) before adding items.

For an additional item it may be necessary to increase the number of commands in your INI file.

[GENERAL]

Commands = 6

FIG 5: Increase number of commands

To add the program number (modal O number) of the program which is currently selected at the

controller proceed as follows.

Modify the template section [5] or add a new one e.g.

[6]

Active = 1

Name = MNPRG

Comment = Main Program

Output section = 1

FIG 6: Add an additional INI file section

Program number can be read by function cnc_rdprgnum which uses structure ODBPRO. In class

DeviceReadExt add:

ODBPRO odbpro; // Program number

FIG 7: Assign a name for structure ODBPRO

Next, add an additional switch to class DeviceReadExt:

case 6:
ret = cnc_rdprgnum(hFanuc, &odbpro); // Program Number
if (!ret)
 sprintf(m_stat.cReturn, "%d", odbpro.mdata); // If successful add to output

break;

FIG 8: Call function for program number

You have successfully added program number to your driver!

https://www.inventcom.net/
mailto:info@inventcom.net

inventcom

FANUCDEVELOPER: DESCRIPTION AND USAGE

Inventcom · www.inventcom.net · info@inventcom.net

Version: March 2018 V1.2

Page 5 of 6

Notes: As the program number is numeric you have to use %d as 2nd argument of the sprintf

command. For text output you have to use %s. More information about these parameters can be

found here.

DEBUG YOUR DRIVER

To debug your driver follow these steps:

Compile the debug version of myfanuc.dll.

Copy myfanuc.dll from the debug directory of your project to the folder where CNCnetPDM.exe is

located. Make sure that customfanuc.dll and all Fanuc Focas DLL files are also in this directory.

Install one of the Fanuc device drivers if not.

Change the content of section [RS232] of CNCnetPDM.ini to use customfanuc.dll e.g.:

1 = 1001;19200;8;N;1;DEV #1;192.168.1.100;8193;0;FANUC;7;6711;none;none;0;customfanuc.dll

Start CNCnetPDM and make sure it uses your new driver. You can see that because CNCnetPDM

copies customfanuc.dll and adds the machine number to it e.g. customfanuc_1001.dll. If no INI file

for machine 1001 exists it also creates a new INI file with 3(!) active entries e.g.

customfanuc_1001.ini.

Then, check the content of the log file for your device in subfolder \log (File name = log_ +

machine number + _ + date + .txt). Errors reported by the device driver are added to this file. For

example ‘Error(s) reported by device 1000: INIT: Windows socket error’ means that your controller

is not reachable at all.

Note: If you have added new items or changed existing ones please adjust the INI file (number of

items, sections) for the device according to your definitions in myfanuc.cpp before starting

CNCnetPDM.

If your new items are missing or incorrect, stop the service, fix the error, rebuild myfanuc.dll, copy

it again to the folder with CNCnetPDM.exe and adjust your INI file. Then, start CNCnetPDM.

To debug the driver set at least one breakpoint in myfanuc.cpp. A good place to start is in class

DeviceReadExt in the line that starts with: switch (iPass)

In Visual Studio (with CNCnetPDM running!) click Debug -> Attach to Process, select

CNCnetPDM.exe and click Attach.

https://www.inventcom.net/
mailto:info@inventcom.net
http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/printf/
https://www.inventcom.net/support/fanuc/device-driver-extended

inventcom

FANUCDEVELOPER: DESCRIPTION AND USAGE

Inventcom · www.inventcom.net · info@inventcom.net

Version: March 2018 V1.2

Page 6 of 6

As soon as the breakpoint is reached you can follow the execution of the program by clicking F10

and see the results of function calls and values of variables.

Note: If you make changes to your source code and rebuild the driver please adjust the INI file for

the device (e.g. customfanuc_1001.ini) before starting to debug again.

https://www.inventcom.net/
mailto:info@inventcom.net

	FANUC DRIVER DEVELOPMENT KIT
	DESCRIPTION
	LICENSING
	SETUP
	USAGE
	INI FILE
	ADJUST ITEMS
	FIG 1: Include and name structure
	FIG 2: Execute function
	FIG 3: Members of structure ODBST
	FIG 4: Output of records with tags and values

	ADD ITEMS
	FIG 5: Increase number of commands
	FIG 6: Add an additional INI file section
	FIG 7: Assign a name for structure ODBPRO
	FIG 8: Call function for program number

	DEBUG YOUR DRIVER

