United States Patent

US009547606B1

(12) (10) Patent No.: US 9,547,606 B1
Wieland 45) Date of Patent: *Jan. 17,2017
(54) INTERCONNECTION OF PERIPHERAL 13/105 (2013.01); GOGF 13/20 (2013.01);
DEVICES ON DIFFERENT ELECTRONIC GO6F 13/4027 (2013.01); GOGF 13/4068
DEVICES (2013.01)
(58) Field of Classification Search
(71) Applicant: OPEN INVENTION NETWORK CPC ... GOG6F 13/105; GOGF 9/4416; GOGF 1/3209
LLC, Durham, NC (US) See application file for complete search history.
(72) Inventor: Martin Wieland, Munich (DE) (56) References Cited
(73) Assignee: Open Invention Network LLC, U.S. PATENT DOCUMENTS
Durham, NC (US) 8,028,040 BL* 9/2011 Hobbscc.c... GOGF 9/45558
. 370/389
(*) Notice: Sub]ect. to any dlsclalmer,. the term of this 2009/0222592 Al* 9/2009 Anderson HO4N 1/32545
patent is extended or adjusted under 35 710/8
U.S.C. 154(b) by 0 days. . .
cited by examiner
This patent is subject to a terminal dis-
claimer. Primary Examiner — Ernest Unelus
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP
(21) Appl. No.: 15/075,772
(57) ABSTRACT
(22) Filed: Mar. 21, 2016 A peripheral device connected to a local electronic device
L which is connected to at least one communication network
Related U.S. Application Data can communicate with a peripheral device attached to a
(63) Continuation of application No. 14/859,634, filed on remote electronic device as if.the remote peripheral deyice
Sep. 21, 2015, now Pat. No. 9,292,455, which is a Was locally attached. Data designated for the remote periph.
continuation of application No. 12/850,045, filed on eral device 1s recerved by a local virtual device object an
Aug. 4, 2010, now Pat. No. 9,141,564. transmitted to th.e remote electronic d.eV1ge via at least one
’ ’ T of the electronic devices communication interfaces or
(51) Int. Cl peripheral devices. Data received by the remote electronic
G0;$F 1 3/12 device’s communication interface or peripheral device is
(2006.01) . : : .
written to the peripheral device at the remote electronic
GO6F 13/10 (2006.01) . ; . . .
GOGF 13,20 200601 device by a virtual device object. For compensation of
() different transfer speeds or outages between the peripheral
GO6F 13/40 (2006.01) device and the communication interface or another periph-
GO6F 9/44 (2006.01) eral device the virtual device provides the ability to utilize
GOG6F 1/32 (2006.01) the virtual devices emulation driver that is attached to the
(52) US. CL virtual device object as an 1/O buffer.
CPC GO6F 13/102 (2013.01); GOGF 1/3209
(2013.01); GO6F 9/4416 (2013.01); GO6F 20 Claims, 5 Drawing Sheets
20 114
SR 13
L L v i
Paripharai
Paripharal o Davice Poripharst fed
Davics Ingerfaee Uegvice 518
. e
40 - Pmiﬁﬁ?m 2EF Frﬂzﬁg{ing] > Obgpet
T Enudation : P Emulstian :
Peripheral ' Olvss H Fesriphara N Errivar :
Pariphersd Hlevice e S Sulaia b d Parighoral fed Device sy el -Nlahesalesto
Davics fresface 1 apg i avice Intarfage g Aad
~ i N
kS WB | Dommunication | % i S ek Communigation {7
i V] tritarfacs i 22 - intertace
i et o Yo

U.S. Patent Jan. 17, 2017 Sheet 1 of 5 US 9,547,606 B1

SYSTEM MERORY ~ MOMITOR

A
1348
k)
] Wt W 4z 138 i
BAM - 333 £ 7 7 ;

13 PROCESSING VIDEQ EEE 1384 x pEvicE
34 ONGT ADAPTER | | INTERFACE | \ ey ey

APPLIZATION < ‘ﬁ}»’“} ,f"\\ﬁ 13

FROGRAMS — 128 .
ROGRA 3 pevice |/

i) s I s

OTHER
FROGRSSS | ¢
MOUILES

&

: y LOCAL AREA NETWORK
HARD MAGNETIC | | OPTICAL SERIAL ETYRSE ;W‘
DISK | IDISKDANE] | DRNE PORT | HEDRORK
FROGRAM INTERFACE | | INTERFACE § | INTERFACE | | INTERPACE FRRTALE
DATA e T 3E Ly o Y [y 1 N ~ N
W A8 kah) ; 1z 113
LN ==k ==
WY 9%
8
WIDE R
oy AREA -
i E s L@ NETWORK A {
e } HEMOTE
3 : AFPLICATHIN 8 OTHER .. 138 §} PRUGRAM Y COMPUTER
SYSTE! PROGHAME AHGHAR D& . jFal
3 135 3 MODUILES vy » TR eyt .
Y b § MEMORY f
6 APPLICATION
i PROGRARS S 122
ENE 4

N\ A

\ i { ; i] y i ¥ 2% g3
Paripheral . 1 Pariphen N N
Paripharal et Bevice Peripharal Trevien oot = 2VE
Dhavice inorface -~ Device Interfacs N
e, e 205 T T e 2
} e L LE O Vinuat b s
Pracessing . Propessing §
I TQEsRing ey | Fromassiog
we Biris G Y
. . § - s
PP Enwdation P Benltiog
Pariphar oy Drwsr Posripharad s briver
Periphiarst = Frovize ..w.».». P " Porighsrst - Prawics vl R e e o e e
fravice ierfage 3 age AP i Devics Intarface 2y R
. 1 3 e
& 208 | Dommunication § % 3 AN k| Communigation |7
Ul tritertacs i 22% - tntertace
i ! i x
! 5 H ‘ ~ i 228 ™
: ¢ ik E § o]
!
i

5.8

U.S. Patent Jan. 17, 2017 Sheet 2 of 5 US 9,547,606 B1

CUREGIN

CREATE GENERIC DEVICE CLASS
¥
RECEIVE QUERYING DEVICE CLASS
Y 302
ENUMERATE NODES P 304
I 303 &

CREATE PRIMARY NODE P Bl ISBUE BUS
RESET

o 30T 308 . - 308
| NETWORK SERIAL PORT IEEE 1304
- INTERFACE INTERFACE INTERFACE
i N {

SET TARGET DEVICE | - 2@

YES " moRre
. DEVICES ?

U.S. Patent

Jan.

17,2017

Sheet 3 of 5

SEND DATA

~ ¥

RECENVE DATA

B i
g

503 RECEWVE DATA |~ 200
N\ * & o 502

ANALYZE DATA

BUFFER DATA

TARGET

DEVICE?

FH3.5

508
e > -
SERIAL IEEE 1394 |
DEVICE BUS NODE |
\ V;
TRANSMIT DATA [

US 9,547,606 B1

U.S. Patent Jan. 17, 2017 Sheet 4 of 5 US 9,547,606 B1

{__seoin_)
= GO0
QUERY DEVICES 6502
""""""""""" 77 e 'l
‘ STORE DEVICE
PY DEVICE ATION 910
_COPY DEVICE INFORMATION ™| inFoRMATION

ENUMERATE UNALLOCATED MEMORY . 803

- BO4

< CAPABILITY ?

e BB I 0806 b 507
INPUT QUTPUT INPUT QUTPUT
DEVICE DEVICE DEVICE

Y ¢ o 509 ¢ 510
ALLOCATE ALLOCATE | ALLOCATE
READING WRITING | READING
MEMORY MEMORY | MEMORY

I 31
ALLOCATE
WRITING
MEMORY
e B12
b 1 CREATE VIRTUAL DEVICE |
END

U.S. Patent Jan. 17,2017 Sheet 5 of 5 US 9,547,606 B1

: e 700
INCOMING DATA
P WRITING MEMORY e 101
e 709
ATTEMPTTO MOVE DATA | %
204 03
- - 707
NO i
INCOMING
- 708 DATA
¥
WRITING
MEMORY
¥ \
WRITING MEMORY 708
¥ ~
END) 10

HG.7

US 9,547,606 B1

1
INTERCONNECTION OF PERIPHERAL
DEVICES ON DIFFERENT ELECTRONIC
DEVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
14/859,634, entitled “INTERCONNECTION OF PERIPH-
ERAL DEVICES ON DIFFERENT ELECTRONIC
DEVICES”, filed on Sep. 21, 2015, now issued U.S. Pat. No.
9,292,455, issued on Mar. 22, 2016, which is a continuation
of application Ser. No. 12/850,045, entitled “INTERCON-
NECTION OF PERIPHERAL DEVICES ON DIFFERENT
ELECTRONIC DEVICES”, filed on Aug. 4, 2010, now
issued U.S. Pat. No. 9,141,564, issued on Sep. 22, 2015, the
entire contents are hereby incorporated by reference in their
entirety.

TECHNICAL FIELD

The present invention relates generally to the use of
peripheral devices and communication interfaces as a means
of communication between electronic devices such as com-
puters and, in particular, to bridging of peripheral devices
via transport media that operates at various speeds and
communication standards such as synchronous and asyn-
chronous.

BACKGROUND OF THE INVENTION

A computer system is comprised of different components
or devices that operate together to form the resultant system.
Typical computer devices such as the central processing unit
usually are supplied with the computer system initially
whereas other devices can be installed into the computer
system after the initial configuration of the system. The
devices of the computer system are generally coupled
together via interconnects which may be of several types,
such as system and peripheral bus.

Networks are typically comprised of a variety of different
electronic components or devices that are able to identify
and communicate with each other by using an addressing
and communication scheme that is known by each partici-
pant. The network allows computers to communicate with
each other and share resources and information. Computer
networks are made up of basic hardware building blocks to
interconnect network nodes, such as Network Interface
Cards, Bridges, Hubs, Switches, and Routers. A network
card, network adapter or NIC (network interface card) is a
piece of computer hardware designed to allow computers to
communicate over a computer network. It provides physical
access to a networking medium.

Device drivers are well known in the art. When a device
is installed onto a computer by the user, a device driver has
to be loaded to enable communication with the device. A
device driver is software that is used to describe and control
the device for the operating system. A virtual device driver
is a specific type of device driver that, like a device driver
for a physical existent device, has full access to the operating
system kernel and is able to communicate directly to a
physical port. In difference to device drivers for existent
hardware a virtual device driver is loaded without a hard-
ware device being detected by the system. A virtual device
driver manipulates kernel mode code using existing hard-
ware resources to emulate a device that is not present on the

20

25

30

40

45

2

computer. A virtual driver is given more access than a
traditional device driver because it is not restricted to talking
to just one particular device.

Virtual device drivers are designed to handle hardware
device contention between multiple processes and to trans-
late or buffer data transfers from a virtual machine to
hardware devices. A virtual machine is a self-contained
operating environment that behaves as if it were a separate
computer. When two or more processes attempt to access the
same device, some method of contention management must
be used. A virtual device driver allows each process to act as
though it has exclusive access to the device.

For example, a virtual printer driver would provide the
printing process with a virtual printer port, and characters
written to the port would be written to a print spooler. The
virtual device driver would then send the job to the printer
when it becomes available. Another method would be to
assign the physical device to only one process at a time, so
that when a process attempts to access the device while it is
in use, the virtual device driver does not pass the request to
the actual hardware, and the process operates as though the
hardware did not exist. Virtual device drivers also virtualize
input/output to the device and for example a virtual network
device driver translates this information into commands to
be sent across a network to a hardware server. A technique
that allows error free communication between devices that
obligatory require exchange of protocol status information’s
faster than provided by the underlying network transport is
not currently known in the art. However, such a technique
would offer significant advantages over the prior art.

A method for bridging multiple network segments and
exposing the multiple network segments as a single network
to a higher level networking software on a bridging com-
puting device as described in U.S. Pat. No. 7,089,335 is
known in the art. However, if this method is used to connect
devices that work with a time critical protocol and the
transmission speed of the network segments fall under a
certain value communication errors occur at the devices.

As disclosed in U.S. Pat. No. 6,968,307 a technique for
creation and use of virtual device drivers on a serial bus is
already known. Beside the creation of virtual device drivers
also an extension of the peripheral bus even over a local area
network (LAN) and/or a wide area network (WAN) is
described. The method emulates the peripheral bus itself
with all its typical features and characteristics. This method
does not give an acceptable answer to the question how
devices can communicate successtul if the underlying net-
work media itself does not meet the requirements of the
peripheral bus in concern of speed and timing.

An extension of fast peripheral buses like the institute of
electrical and electronics engineers (IEEE) 1394 “Firewire”
bus over comparatively slow transport media such as wire-
less networks as disclosed by the IEEE 1394 Trade Asso-
ciation in December 2001 allows error free communication
between endpoints of such an extended peripheral bus in
terms of bus availability and clock time synchronization.
However, a solution for devices that obligatory require the
exchange of protocol information’s at a speed that is higher
than the wireless network is not included.

The IEEE 1394 Trade associations white paper “Network-
ing IEEE 1394 Clusters via UWB over Coaxial Cable”
discloses and covers many parts of communication between
devices on a extended peripheral bus inclusive all timing
requirements of video and audio devices. However, this
disclosure is solely based on using an underlying network

US 9,547,606 B1

3

technology that is quite as fast as the peripheral bus itself.
Slow, dropped out or unavailable networks are not covered
by this disclosure.

Virtualization technologies from various manufacturers
already allow the creation of additional virtual hardware
resources such as network interface card, hard disk and
computer system (Guest machine) on a physical existent
computer system (Host machine). This technique emulates a
machine with it’s physical properties. By establishing inter-
connections between the physical devices of the host and the
devices of the emulated guest devices of the guest can be
attached to similar physical devices of the host.

However, devices on peripheral buses of the host machine
such as nodes of a serial bus cannot be attached to nodes of
the peripheral bus of the guest machine because the periph-
eral bus of the host is independent of the guest’s bus. Even
if possible, if the architecture of the guest’s operating system
fundamentally differs from the host’s operating system the
attachment of newly added devices on peripheral buses of
the host to the guest’s peripheral buses most likely fails
because the device is announced by the operating system
and not the machine.

In Digi International’s AnywhereUSB Remote I/O Con-
centrator documentation another method is disclosed that is
applicable for accessing physically existent USB devices on
an external hardware device which is attached to a network
cable from a remote computer that is also connected to a
network. At the remote computer a service is used that
connects to the external hardware by using the TCP/IP
network transport protocol of the remote computer. Thru the
network connection the service establishes a socket connec-
tion to the device. A hardware description information of
each external USB connector is installed on the local com-
puter. The local serial bus of the computer is extended with
these new nodes and makes them part of the local serial bus.
By design, this technique extends the local serial bus of the
computer to the external device by emulating a wired
connection over the network. The external device itself gets
a part of the local serial bus. This approach requires that the
external device with it’s USB connectors can be reached by
the network and provides information’s about the installed
connectors to the local service. If USB connectors are part
of another computer’s local serial bus or different types of
connectors are used this method fails because the computer
does not provide information’s about the nodes installed on
his local serial bus thru the network.

SUMMARY OF THE INVENTION

A peripheral device connected to a local electronic device
which is connected to at least one communication network
can communicate with a peripheral device attached to a
remote electronic device as if the remote peripheral device
was locally attached. Data designated for the remote periph-
eral device is received by a local virtual device object and
transmitted to the remote electronic device via at least one
of the electronic devices communication interfaces or
peripheral devices. Data received by the remote electronic
device’s communication interface or peripheral device is
written to the peripheral device at the remote electronic
device by a virtual device object. For compensation of
different transfer speeds or outages between the peripheral
device and the communication interface or another periph-
eral device the virtual device provides the ability to utilize
the virtual devices emulation driver that is attached to the
virtual device object as an /O buffer. As the invention
provides a generic method for virtualization of a remote

10

15

20

25

30

35

40

45

50

55

60

65

4

peripheral device it works independent from specific types
of devices and Operating Systems. As the invention works
with synchronous and asynchronous communication stan-
dards and does not require a specific network transport
protocol it can be used with any available communication
interface or peripheral device of the electronic device.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of an exemplary operating
environment.

FIG. 2 is a block diagram of a system for transmission of
data between electronic devices.

FIG. 3 is a flow chart illustrating a method of creating a
virtual device in accordance with the present invention.

FIG. 4 is a flow chart illustrating a method of transmission
of data from a peripheral device in accordance with the
present invention.

FIG. 5 is a flow chart illustrating a method of reception of
data by a device in accordance with the present invention.

FIG. 6 is a flow chart illustrating a method of creating a
virtual device if used on electronic devices that have limited
or no hardware virtualization capabilities

FIG. 7 is a flow chart illustrating a method of transmission
of data from a virtual device if used on electronic devices
that have limited or no hardware virtualization capabilities

DETAILED DESCRIPTION OF THE
INVENTION

The invention may be more vividly described with refer-
ence to FIGS. 1-5. FIG. 1 is a schematic diagram of a
conventional digital electronic device that can be used to
implement various aspects of the invention. The electronic
device 100 includes a processing unit 101, a system memory
130 and a system bus 105 that couples various system
components including the system memory to the processing
unit. System bus may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. System memory includes a read only memory
(ROM) 131 and a random access memory (RAM) 133.

A basic input/output system (BIOS) 132 containing the
basic routines that help to transfer information between
elements within the electronic device 100, such as during
start-up, is stored in ROM 131. The electronic device 100
also includes a hard disk drive 107 for reading from and
writing to a hard disk, an optical disk drive 111 for reading
from or writing to a removable optical disk 116, such as a
CD ROM or other optical media and a magnetic disk drive
109 for reading from or writing to a removable magnetic
disk 115. Magnetic disk drive 109, Hard disk drive 107 and
optical disk drive 111 are respectively connected to the
system bus 105 by a magnetic disk drive interface 108, a
hard disk drive interface 106 and an optical disk drive
interface 111. The drives and their associated media provide
nonvolatile storage of electronic devices readable instruc-
tions, data structures, program modules and other data for
the electronic device 100.

Of course other types of media readable by electronic
devices which can store data that is accessible by an elec-
tronic device such as flash memory cards, digital video
disks, magnetic cassettes, random access memories
(RAMs), read only memories (ROMs), and the like, may
also be used in the exemplary environment. A number of
program modules can be stored on the hard disk, magnetic
disk 115, optical disk 116, ROM 131 or RAM 133, including

US 9,547,606 B1

5

an operating system 134, one or more application programs
135, other program modules 136, and program data 137.

A user can enter commands and information into the
electronic device 100 through input or selection devices,
such as a keyboard 119 and a pointing device 117. The
pointing device 117 may comprise a mouse, touch pad,
touch screen, voice control and activation or other similar
devices. These and other input devices are often connected
to the processing unit 101 through a serial port interface 112
that is coupled to the system bus, but may be connected by
other interfaces, such as a parallel port or a universal serial
bus (USB).

A monitor 104 or other type of display device is also
connected to system bus 105 via an interface, such as a video
adapter 102. In addition to the monitor, electronic devices
typically include other peripheral output devices (not
shown), such as speakers and microphones.

An additional serial port in the form of an IEEE 1394
interface 103 may also be provided. The IEEE 1394 inter-
face 103 couples an IEEE 1394 compliant serial bus 138 to
the system bus 105 or similar communication bus. The IEEE
1394 compliant serial bus 138, as known in the art, allows
multiple devices 139 to communicate with the electronic
device 100 and each other using high-speed serial channels.

The electronic device 100 can operate in a networked
environment using logical connections to one or more
remote electronical devices, such as a remote electronical
device 121. A remote electronic device 121 typically
includes at least some of the elements described above
relative to the electronic device 100, although only a
memory storage device 122 has been illustrated in FIG. 1.
The logical connections depicted in FIG. 1 include a local
area network (LAN) 114 and a wide area network (WAN)
120. Such networking environments are commonplace in
offices, enterprise-wide computer networks, intranets and
the Internet.

When used in a LAN networking environment, the elec-
tronic device 100 is connected to a local network 114
through a network interface or adapter 113. When used in a
WAN networking environment, local electronic device 100
and remote electronic device 121 may both include a modem
118 or other means for establishing a communications over
wide area network 120, such as the Internet. Modem 118,
which may be internal or external, is connected to system
bus 105 via serial port interface 112. In a networked envi-
ronment, program modules depicted relative to the elec-
tronic device 100, or portions thereof, may be stored in the
remote memory storage device. It will be appreciated that
the network connections shown are exemplary and other
means of establishing a communications link between the
electronic devices can be used. The existence of any of
various well-known protocols, such as TCPIIP, “ETHER-
NET”, FTP, HTTP and the like, is presumed, and the system
can be operated in a client-server configuration to permit
retrievement of web pages from a web-based server. For
example, in an embodiment of the present invention, the
remote electronic device 121 is a server having stored
thereon one or more files that may be accessed by the local
electronic device 100. Procedures of the present invention
described below can operate within the environment of the
electronic device shown in FIG. 1.

Although the present invention is generally applicable to
an electronic device operating in accordance with the
description shown above, the invention is applicable to any
electronic device that is able to uniquely identify attached
peripheral devices either by a reserved memory area or a
unique node id like when using peripheral devices that are

10

15

20

25

30

35

40

45

50

55

60

65

6

attached to a peripheral interface that uses direct memory
access control methods. In FIG. 2, there is a system that
maybe used to implement the present invention. A peripheral
device 200 may be connected to an electronic device 201.

The electronic device 201 comprises a peripheral device
interface 202, which manages communications between the
physical bus 203 and the peripheral device 200.

A user of the electronic device 201 has the option of
creating a virtual device object 205 that, after completing the
remaining steps represents an image of the remote peripheral
device 215 plugged into the remote electronic device 214. At
creation, the virtual device object loads an emulation driver
206 appropriate for a node of the peripheral bus of the
selected local attached peripheral device 200.

The user may want to emulate more than one device. In
this case, the user would repeat the process by creating a
second virtual device object based on peripheral device
properties of another locally attached device (not shown).
The second virtual device object would then load a second
emulation driver (not shown). Several virtual device objects
205 can be created and can exist at the same time. One
benefit of the present invention is that it instantly allows a
electronic device to emulate multiple remote peripheral
devices at the same time.

Another benefit of the present invention is that it does not
require that the remote device or the remote electronic
device be plugged in or connected to create a virtual device
object. A user mode application sends a request that tells the
electronic device to create a virtual device object with
certain peripheral device properties. The virtual device
object loads an emulation driver that supports the target
functionality of a node of the selected peripheral interface or
bus. If the remote electronic device with the remote periph-
eral device attached to it is connected to the local electronic
device the virtual device object is already present and is
immediately capable of representing the complete function-
ality of the peripheral device of the remote electronic device.

Formerly, the electronic device would not be able to
represent to its peripheral bus nodes functionality other than
that of a physical device attached to the local peripheral bus.
For this example, the device 200 is assumed to be a mass
storage node attached to an IEEE 1394 bus. The electronic
device 200 would have a device driver (USB mass storage
device driver) that enables communication with the device
200. The user can create a virtual device object 205 that
represents an additional member of the peripheral device
class of the peripheral device 200 even though the device is
not attached to the local electronic device.

At the local electronic device a virtual device object may
be created by modifying the installation files of the periph-
eral device 200. When a IEEE 1394 bus node is detected, an
additional virtual device entry is automatically created in the
registry. The virtual device object 205 uses an emulation
driver 206 for communication with the device 200.

In addition to being able to emulate multiple peripheral
devices at one time and not requiring that a device be
plugged in to emulate the device, another benefit of the
present invention is that it allows “native” communication
between physical existent and virtual devices across a
peripheral bus. In the previous example, the peripheral
device 200 can communicate using “native” language
because it believes it is communicating with a node of the
local peripheral bus instead of a remote electronic device. In
the present invention no translations are necessary because
the peripheral device 200 communicates directly with the
virtual device object 205.

US 9,547,606 B1

7

In FIG. 3, a method of creating a virtual device is shown.
At step 300 a generic virtual device object is created by the
operating system of the electronic device that may be
initialized by the existent peripheral device itself that sends
its peripheral device properties. After the querying device
class is received 301 the peripheral devices attached to the
peripheral interface or bus are enumerated 302. In case of a
peripheral interface like the serial port interface enumeration
is done by the operating system followed by the creation of
a new primary node 303. In case of a node of a 1394 bus the
driver enumerates the existent nodes by reading the nodes
from the control status register and then adds a new node by
assigning a node id and writing the appropriate informa-
tion’s to the CSR. In such case the driver issues a reset 304
of the peripheral bus to allow the nodes an enumeration of
the new device. After setup of the primary node the second
binding of the virtual device is set. This requires querying
available target devices 305. this may either be done by the
user or by using a predefined setup file that automatically
selects from available communication interfaces 207 or
peripheral devices that may be connected to a remote
electronic device. After querying the available devices a
device can be selected 306 from a list of available interfaces
like for example a network interface 307 a serial port
interface 308 or an IEEE 1394 interface and be set 310 as the
primary target device. After the primary target device is
selected additional secondary devices may be selected 311 to
guarantee error free communication even if the primary
device fails. This process can be repeated several times for
each device the electronic device should use.

In case of using the method to emulate a node of a serial
bus a bus reset can be forced after the device object’s
exposition. This bus reset causes all devices or nodes
attached to the serial bus to enumerate each other. Any other
node may now see the new node, the device chosen to
emulate.

The method of creating a virtual device as shown in FIG.
3 can also be initialized by a request in the form of a data
structure that is sent to the application program interface
(API). The request to generate an additional node can be sent
by an upper level driver that is already loaded for a IEEE
1394 device The request could also be sent by an application
upon user request. Using a request to the 1394 bus driver
software can pass a data structure that causes the bus driver
itself to add a virtual device and to fill in the data structure
required for the device. By setting an instance 1D for the
device the instance of the device can be identified.

For enumeration of the emulation driver a string may be
passed to the driver that is used to generate the PnP ID’s. To
allow a virtual device on an IEEE 1394 bus to remain
present despite a subsequent hardware or software reboot it
may be necessary to pass a flag to the driver that keeps the
devices state persistent. This will guarantee that the virtual
device object will be reported as existent after a reboot. The
electronic devices operating system believes the emulated
device is present. In other words, the electronic devices
operating system can then “see” the emulated device. This is
a benefit because it allows any other node on the bus to
communicate “natively” with the device rather than using an
additional node that performs as a server/translator between
the devices. Generally, virtual device objects and the respec-
tive drivers have the same access to the driver of the
peripheral bus as would a physical device object and its
respective driver.

Because there is no physical target device there are
differences in behavior with a virtual device object because
there is no physical target device. Normally the peripheral

10

20

25

30

35

40

45

50

55

60

65

8

bus driver fills in the target node identifier and the appro-
priate packet size and transfer rate using information from
the enumeration procedure with a particular device.

Due to the fact that there is no physical device the virtual
device object has to provide all packet information because
there is no target device node. For example, a read/write
request will be intercepted and the virtual device object will
fill in the address information for the request. The bus driver
makes sure not to overwrite any fields. A request for
allocation of a range exhibits different behavior if addressed
to a virtual device object. All address allocations from an
emulation driver will implicitly have the flag to broadcast
access enabled if post notification on the address range is
required. This is done to allow any external node to access
the address range used by the emulation driver to simulate
the device.

In FIG. 4, a method of transmission of data from a
peripheral device in accordance with the present invention is
shown. Data 400 sent by the physical existent peripheral
device to the virtual device object is received by the virtual
device 401. As the virtual device object was generated based
on descriptive information’s of the sending device the
exchange of necessary protocol status information’s 402
may be provided by the virtual device object. Upon recep-
tion 401 of data from the peripheral device the virtual device
object queries 403 the primary transport device and checks
if the device is available for data transport. In case of a serial
device this may be done by simply checking the status of the
signal levels of the transmission and reception lines. Hand-
shake lines, if any, may also be checked. As the virtual
device objects purpose is to prevent from communication
outages and failures it will always report a successful state
to the sending peripheral device. While checking the target
device status 404 the incoming payload data may be stored
in a buffer 405. This buffer may either be located in the RAM
of'the electronic device or in any kind of mass storage device
attached to the electronic device. The virtual device object
may also use a combination of volatile memory like RAM
and mass storage memory for example if the incoming
payload data exceeds a certain amount mass storage memory
is used instead of RAM. The virtual device object may also
be configured to buffer the data according to the speed of the
target device. The speed of the target device can be detected
by measuring by comparing the time for filling up the initial
buffer by the incoming data with the time the data is read by
the target device. It is even possible to configure an algo-
rithm that automatically sets the amount of buffer for the
device based on the different speeds of the devices. Such
algorithm may also automatically decide about the location
for storage of buffered data, either in volatile or non volatile
memory. As the virtual device object always reports the
successful reception of data in a timely fashion to the
sending device it prevents the sending device from reporting
errors or warnings. If the virtual device object detects that
the primary target device is finally not available, it restarts
querying the target device status by querying the secondary
target device. As the incoming payload data is buffered
anyways this process does not lead to loss of any data. Upon
a successtul query of the target device the virtual device
object transmits the data to the target. As data may arrive at
the remote electronic device from various communication
interfaces or peripheral device connections it is absolutely
necessary to guarantee exact identification of the incoming
data source by the receiving electronic device. This is
provided by the virtual device object in various ways. The
virtual device object can add its unique node id in the form
of a identification string that may either be in plain text or,

US 9,547,606 B1

9

for binary data in the form of a binary pattern. Due to the fact
that this data is never directly received by the peripheral
device at the remote electronic device this does not lead to
any reception errors at the remote peripheral device. If a
communication interface in form of a network interface card
is used unique identification of the source data can also be
provided by adding identification information such as a
number or a single flag to the data exchange protocol used
by the communication interface. When using a network
interface as the preferred communication media also a fixed
communication port or a range of ports can be defined that
allow identification by the receiving device.

FIG. 5. shows a method of reception of data by a device
in accordance with the present invention. As previously
described data from a specific peripheral device may arrive
at the receiving electronic device from multiple devices
either communication interfaces or peripheral connections
such as cables or WIFI connections. To guarantee exact
identification of the incoming data the primary task of the
virtual device object at the receiving electronic device is to
analyze the incoming data. The architecture of the virtual
device object used at the receiving device is similar to the
architecture of the sending device. As described in FIG. 3 the
virtual device object is based on a generic device object that
is able to create peripheral device or bus bindings by
querying existent peripheral device classes of the device. If
the addressed peripheral device at the receiving electronic
device is a member of the same peripheral device class as the
peripheral device at the sending electronic device the virtual
device object installed at the sending electronic device may
be installed from a setup file generated by the initial device.
As shown in FIG. 3 the virtual device object may create
multiple bindings. The first step is to enumerate the existent
device classes on the electronic device. At this device, the
primary node is the target for the desired data transfer. The
primary node may be automatically assigned by the virtual
device object or manually selected from a list of available
peripheral devices from the user. Because there is no need
for creation of additional new bus nodes or new virtual
peripheral devices a bus reset after enumeration of the
existent nodes on the target bus is not necessary. As
described in FIG. 3 it is necessary to select at least one
communication interface or peripheral device at the virtual
device object to inform the virtual device object about
possible interfaces for incoming data. When installing the
virtual device object on the target electronic device it is very
useful to use the existent setup information of the sending
device to guarantee that the unique node id transmit by the
sender leads incoming data to the desired peripheral device.
As data may arrive from various interfaces the virtual device
objects primary task is to analyze the incoming data for the
node id specified in the virtual device object. As this may
take some time the virtual device object writes the incoming
data to a buffer that may be built up in all variations as
described in the previous chapters. If the virtual device
object has finished the analysis of the data, it removes the
identification data and transmits the payload data to the
targeted device.

For most requests, the behavior is identical between
virtual and physical devices. Although the invention has
been described in relation to preferred embodiments, many
variations, equivalents, modifications and other uses will
become apparent to those skilled in the art. The scope of the
present invention should not be limited to the specific
disclosure but determined only by the appended claims.

10

15

20

25

30

35

40

45

50

55

60

65

10

The present invention is also applicable for electronic
devices that have limited or no hardware abstraction capa-
bilities.

In FIG. 6 a method of creating a virtual device in such an
electronic device is shown. At step 600, the information
about existing peripheral devices is queried from the elec-
tronic device. The devices main application program usually
stores this information in a plain text file or a formatted file
that, combined with the electronic devices or it’s operation
systems rule set for reading or writing information’s repre-
sents a table. The information may be stored in the electronic
devices system memory. Alternatively this information can
be stored in an external storage media that may be accessible
from the electronic devices system bus or a peripheral
device interface. The information contains descriptive infor-
mation’s about the peripheral device, its capabilities like
Input-Output-device or both and the memory areas allocated
for the device. As such simple devices mostly do not have
peripheral devices that allow viewing or direct input of
information it may be necessary to transmit the devices
application program to an external device that is capable to
do so prior to making modifications. For transmission from
and to the electronic device any available peripheral device
interface that allows In- and Output may be used. If the
electronic device provides remote access like from an inter-
nal web server or a communication protocol (e.g. Telnet) this
may also be used to access the device. To create a virtual
device information about a single existing peripheral device
is copied 601 to either a internal or a external memory
location. This can be done by user input or the electronic
devices application program. The memory areas of the
electronic device that are already allocated by existing
peripheral devices are used to enumerate unallocated
memory 603 for the virtual device. All peripheral device
information copied in step 601 is saved 602 to allow
subsequent configuration tasks. Depending on the capabili-
ties 604 of the copied device information about allocated
memory areas of the copied peripheral device is modified to
point to unallocated memory areas followed by allocation of
the newly defined memory areas for the virtual peripheral
device. In case the copied peripheral device is an input
device 605 a memory area for reading 608 is allocated. In
case the copied device is an Output device 606 a memory
area for writing 609 is allocated. If the copied device is an
In- and Output device one memory area for reading 610 and
one for writing 611 is allocated. By adding this information
to the electronic devices peripheral device configuration
information file the virtual device is created 612. As any
attempt to read from this device would give no results and
an attempt to write to this virtual electronic device would
lead to an immediate buffer overflow caused by non exis-
tence of a physical device that picks up the data additional
steps are required depending on the capabilities of the
electronic device and/or it’s Operating System.

In FIG. 7 a method of sending data by a virtual device is
shown. To send incoming data 700 received by the virtual
device out via the physical existent peripheral device data
has to be written to the virtual devices memory area for
writing 701. Incoming data at this memory location causes
the virtual peripheral device to attempt to move the data 702
to the writing memory area of the physical existent device
710. In case the memory area of the physical existent device
is locked 703 for example due to an active sending process
of the electronic device the memory area of the virtual
device for writing also changes to a locked state 704 to
prevent from buffer overflows. Another possible variant for
sending data is to create, as described above, a second virtual

US 9,547,606 B1

11

device that receives 707 the data sent by the first virtual
device in case the memory area status of the physical
existent device for writing is locked 705. The memory area
for writing 708 of this second virtual device may be located
in the electronic device or attached to it as a peripheral
storage device. In distinction to the procedure for locking
704 the memory area of the first virtual device if only a
physical existent target device is defined the status of the
first virtual devices memory for writing changes to unlocked
as soon as the second virtual device is selected. The second
virtual device also attempts to move 709 the data to the
writing memory of the physical existent device. The ability
to subsequently use multiple devices for transmission of data
in combination with the buffering scheme also allows pack-
aging of small snippets of data to a single data packet if used
in conjunction with a packet oriented network protocol that
provides information’s about available sizes of transfer
units. In such case the second virtual device retains all
incoming data until the amount equals the size of the
specified transfer unit and then writes the data to the memory
area of the physical existent device for writing. As the virtual
device has a memory area allocated for writing the size of
this memory area may also be used to define the packet size
even if the physical existent device again divides the incom-
ing data into smaller packets or merges them to form larger
packets.

As the first virtual device is not connected to a physical
accessible interface reading data from a physical existent
peripheral device requires additional steps. Incoming data at
a physical existent interface usually is unassigned and needs
to be picked up by the application program of the electronic
device for further processing. To read data from the physical
existent interface the virtual device initially locks the input
memory area of the physical existent device or performs
permanent read requests to the input memory area of the
physical existent device. This causes the physical existent
devices input memory area to change its status to be locked
for reading by parts of the electronic devices application
program or peripheral devices of the electronic device other
than the virtual device. On arrival of data at a physical
existent interface the virtual device copies the data to the
input memory area of the virtual device and clears the input
memory area of the physical existent device to allow recep-
tion of further data. If more than one virtual device is defined
the data is cleared from the input memory area of the
physical existent device after it has been written to the last
virtual device. As the input memory area of the physical
existent device stays locked and is not accessible by the
application program or other devices than the virtual devices
the descriptive information about the physical existent
peripheral device may be changed to point to the input
and/or output memory area of a virtual device so no modi-
fications of the electronic devices initial application program
are needed.

As the present invention allows transmission of data from
multiple virtual devices via one physical existent peripheral
device it is also possible to add additional information for
each virtual device to the data being written to the memory
area for writing of the physical peripheral device. If used in
a bus system were the node identifies itself by a unique node
identification each virtual device can add its own node
identification to the data being written. The node identifi-
cation may be taken from the descriptive information of the
virtual device or be set by the application program of the
electronic device. As a result, a single electronic device with
a single peripheral communication interface can appear as
multiple devices on a bus system.

10

15

20

25

30

35

40

45

50

55

60

65

12

The invention can also be used to create multiple virtual
devices in manufacturer specific bus topologies (like CAN,
EIB, MAP) that assign a unique node id to each client. Such
“real time” buses work at a fixed speed where data packets
are transported in slots and identify themselves by a node id
that is checked by each node of the bus. As incoming data
on a single physical interface may be received by multiple
virtual devices and each virtual device can have its own node
id it is possible to address multiple bus clients in one
electronic device. By adding a specific node id to unassigned
data arriving at the memory area for writing of the virtual
device it is possible to transmit data from a specific bus node
to other nodes on the bus. As reception of data on the
physical existent interface of the electronic device leads to
reception on all virtual devices even such virtual devices can
be directly addressed as the virtual devices that do not have
the node id addressed simply discharge the data.

If the descriptive information about the physical existent
device is changed to point to the memory area assigned to a
virtual device all traffic targeted to the physical device by the
electronic devices application program can be simply redi-
rected to another physical device as the virtual device may
be connected to another physical existent peripheral or
communication device. Such redirection can even be
achieved if the descriptive information of the physical
existent device cannot be modified. All data sent out by the
electronic device may be received by another device that
leads this data to its own virtual devices. As these virtual
devices can be bound to various physical existent devices
redirection can be achieved even if not possible in the
sending device.

The present invention allows the use of multiple physical
communication or peripheral devices for transmission of
data from one sender. All of the electronic devices commu-
nication or peripheral devices may simultaneously be avail-
able and able to transfer data to the desired target. The route
between the local and the remote device varies dependent on
the selected peripheral or communication device and the
target. As the route and the transmission time for each target
may dynamically change due to traffic and intermediate
devices on the route in addition to the successive access of
the defined devices depending on their availability various
routing protocol methods can be used for the selection of a
preferred device for specific targets.

To select a preferred communication interface or periph-
eral device for data transfer to a specific target the electronic
device itself may maintain a list of destinations and their
routes by periodically distributing and receiving routing
tables throughout the network. The electronic device may
also find routes on demand by flooding the network with
route request packets. The route may also be found on
demand by following present flows wherein the electronic
device may unicast consecutively when forwarding data
while promoting a new link. These known routing protocol
methods may also be combined by initially establishing the
routing with some already prospected routes followed by
serving the demand from additionally activated nodes
through flooding the network with route request packets.
These known routing protocol methods are only applicable
for communication tasks were a single network protocol is
used on all targeted nodes. As the present invention supports
the usage of multiple communication and peripheral inter-
faces that usually work with different communication pro-
tocols and transport media adjusted routing protocol meth-
ods have to be used.

The virtual peripheral device in conjunction with the
associated physical existent peripheral and communication

US 9,547,606 B1

13

devices builds up a functional unit in the electronic device.
The initial structure of this unit already contains a static
routing protocol method were the selection of the preferred
communication or peripheral device depends on its order
and its availability. For communication with a remote node
the unit always selects the first device. Only if this device is
not available the second device is selected. For flexibiliza-
tion of this static behavior the unit may add metric infor-
mation for each selectable peripheral or communication
interface. Depending on the capabilities of the electronic
device this information can be stored together with the
descriptive information of the unit or in a separate list, a unit
specific routing table that is assigned to the unit. If a metric
is available for the devices selection of the preferred device
is done by comparison of the available metrics. If no
additional routing algorithms are used the metric value may
be defined by the order and the availability of the devices.
If a device becomes unavailable, its metric is increased by
the unit. This results in a change of the order of the preferred
devices. Unit specific routing information may be distrib-
uted to and received by other available nodes. As the
distributed routing information contains information about
the sending device, the available communication and periph-
eral interfaces and their respective metric values the infor-
mation can be used by other nodes for communication with
peripheral devices at the electronic device that distributed
the information. If used in conjunction with communication
interfaces that support a packet oriented network protocol
the units routing information may be distributed by using a
specific port number. If used with peripheral or communi-
cation interfaces that do not support such distinction meth-
ods, the unit specific routing information may also be
exchanged by sending it together with the transmitted pay-
load data. This, of course requires a known synchronization
indicator for begin and end of routing information on all
participating nodes. Alternatively the routing information
for the unit can be transmitted by a communication interface
of the electronic device that supports a packet oriented
network protocol but is not a member of the unit. To define
or adjust metrics for the peripheral or communication inter-
faces of the unit additional methods can be used. For
communication interfaces that support a packet oriented
network protocol information about number of hops, speed
of the path, latency, path reliability, path bandwidth, load
and MTU can be taken into account whereas with peripheral
devices that just use simple point to point communication
only speed and latency information may be available for
definition of the metric value.
What is claimed is:
1. A method, comprising:
creating a generic virtual device object via a processor of
an electronic device, the generic virtual device object
representing an image of the peripheral device attached
to the electronic device and comprising properties of
the peripheral device;
assigning the generic virtual device object to a device
class associated with the peripheral device;
binding the generic virtual device object to at least one
communication interface of the electronic device;
installing the generic virtual device object on a remote
electronic device using existent setup information of
the electronic device;
receiving data at the electronic device from a remote
peripheral device attached to the remote electronic
device;
generating a setup file via the electronic device responsive
to determining the device class of the remote peripheral

25

30

40

45

50

55

65

14

device attached to the remote electronic device is a
same one as the device class of the peripheral device
attached to the electronic device;

installing a remote virtual device object at the remote

peripheral device via the setup file; and

emulating the remote peripheral device from the elec-

tronic device via an emulation driver loaded by the
remote virtual device object;

wherein multiple remote virtual device objects are created

for respective emulation drivers; and

wherein multiple remote peripheral devices are emulated

simultaneously.
2. The method of claim 1, wherein data received by the
generic virtual device object from sources other than its
binded communication interface is redirected to at least one
assigned communication interface.
3. The method of claim 1, wherein data received by the
communication interface that is bound to the generic virtual
device object is redirected to the generic virtual device
object.
4. The method of claim 2, further comprising at least one
of:
creating an intermediate buffer between the generic vir-
tual device object and its communication interface; and

sending data designated for the communication interface
to the buffer and sending data from the buffer to the
communication interface.
5. The method of claim 3, further comprising at least one
of:
creating an intermediate buffer between the communica-
tion interface and the generic virtual device object; and

sending data designated for the generic virtual device
object to the buffer and sending data from the buffer to
the generic virtual device object.

6. The method of claim 2, further comprising at least one
of:

determining the availability of any communication inter-

face; and

performing at least one of redirecting and sending data to

the first available communication interface.

7. The method of claim 1, wherein information used to
bind the generic virtual device object to the communication
interface is taken from a setup file.

8. The method of claim 1, wherein information used to
bind the generic virtual device object to the communication
interface is inputted by a user.

9. The method of claim 1, wherein creation of the generic
virtual device object is initialized by an existent peripheral
device of the electronic device.

10. The method of claim 1, wherein creation of the
generic virtual device object is initialized by a request in the
form of a data structure.

11. The method of claim 1, wherein the assignment of the
device class is determined by a querying peripheral device.

12. The method of claim 1, wherein a parameter for
assignment of the device class is inputted by a user.

13. The method of claim 1, further comprising assigning
properties of the generic virtual device object by at least one
accessory parameter.

14. The method of claim 1, further comprising enumer-
ating existent device nodes detected and device classes
currently operating on the electronic device.

15. The method of claim 1, further comprising assigning
a primary node via the virtual device object, wherein the
primary node is an intended target recipient of a data
transfer.

US 9,547,606 B1

15

16. The method of claim 1, wherein the device class of the
generic virtual device object is different from any commu-
nication interface device class previously bound to the at
least one communication interface of the electronic device.

17. The method of claim 1, wherein the determining of the
device class of the remote peripheral device attached to the
remote electronic device is the same as the device class of
the peripheral device attached to the electronic device occurs
via the data received via the generic virtual device object.

18. The method of claim 1, further comprising transmit-
ting the setup file from the electronic device to the remote
electronic device.

19. A non-transitory computer readable medium compris-
ing instructions that, when executed by a processor, cause
the processor to perform:

creating a generic virtual device object representing an

image of a peripheral device attached to an electronic
device and comprising properties of the peripheral
device;

assigning the generic virtual device object to a device

class associated with the peripheral device;
binding the generic virtual device object to at least one
communication interface of the electronic device;

installing the generic virtual device object on a remote
electronic device using existent setup information of
the electronic device;

receiving data at the electronic device from a remote

peripheral device attached to the remote electronic
device;

generating a setup file via the electronic device responsive

to determining the device class of the remote peripheral
device attached to the remote electronic device is a
same one as the device class of the peripheral device
attached to the electronic device;

installing a remote virtual device object at the remote

peripheral device via the setup file; and

emulating the remote peripheral device from the elec-

tronic device via an emulation driver loaded by the
remote virtual device object;

10

15

20

25

30

35

16

wherein multiple remote virtual device objects are created
for respective emulation drivers; and
wherein multiple remote peripheral devices are emulated
simultaneously.
20. A system, comprising:
a remote electronic device;
a remote peripheral device;
a peripheral device; and
an electronic device including a processor configured to:
create a generic virtual device object that represents an
image of the peripheral device and comprising prop-
erties of the peripheral device;
wherein the generic virtual device object is assigned to
a device class associated with the peripheral device;
bind the generic virtual device object to at least one
communication interface of the electronic device;
install the generic virtual device object on the remote
electronic device based on existent setup information
of the electronic device;
receive data at the electronic device from the remote
peripheral device communicably coupled to the
remote electronic device;
generate a setup file via the electronic device respon-
sive to a determination that the device class of the
remote peripheral device attached to the remote
electronic device is a same one as the device class of
the peripheral device attached to the electronic
device;
install a remote virtual device object at the remote
peripheral device via the setup file; and
emulate the remote peripheral device from the elec-
tronic device via an emulation driver loaded by the
remote virtual device object;
wherein multiple remote virtual device objects are
created for respective emulation drivers; and
wherein multiple remote peripheral devices are emu-
lated simultaneously.

#* #* #* #* #*

