
111
US009529740Bl

(12) United States Patent
Wieland

(10) Patent No.:
(45) Date of Patent:

US 9,529,740 Bl
*Dec. 27, 2016

(54) METHOD FOR CREATION OF A DEVICE
DRIVER FOR A PERIPHERAL DEVICE

(56) References Cited

U.S. PATENT DOCUMENTS

(72) Inventor: Martin Wieland, Munich (DE)

(21) Appl. No.: 14/468,091

(71) Applicant: Open Invention Network LLC,
Durham, NC (US)

(73) Assignee: Open Invention Network LLC,
Durham, NC (US)

5,339,432 A * 8/1994 Crick G06F 9/4411
710/8

6,081,850 A * 6/2000 Garney G06F 9/4415
710/15

6,263,387 Bl * 7/2001 Chrabaszcz G06F 13/4086
709/220

2003/0070063 Al * 4/2003 Boyle H04L 29/06
713/2

2003/0088711 Al * 5/2003 Tabares G06F 9/4411
719/321

2003/0132956 Al * 7/2003 Duncan G06F 9/4411
715/735

2003/0225928 Al * 12/2003 Paul G06F 9/4411
719/321

2004/0230710 Al * 1112004 Goodman G06F 9/4411
710/8

2005/0257226 Al * 11/2005 Belvin G06F 9/4413
719/328

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 20 days.

This patent is subject to a terminal dis­
claimer.

(*) Notice:

(2006.01)
(2006.01)
(2006.01)

(22)

(63)

(51)

(52)

(58)

Filed: Aug. 25, 2014

Related U.S. Application Data

Continuation of application No. 14/044,016, filed on
Oct. 2, 2013, now Pat. No. 8,819,299, which is a
continuation of application No. 121711,453, filed on
Feb. 24, 2010, now Pat. No. 8,554,956.

Int. Cl.
G06F 3/00
G06F 13/10
G06F 13/40
U.S. Cl.
CPC G06F 13/102 (2013.01); G06F 13/4081

(2013.01)
Field of Classification Search
None
See application file for complete search history.

* cited by examiner

Primary Examiner - Elias Mamo
(74) Attorney, Agent, or Firm - Haynes and Boone, LLP

(57) ABSTRACT
A method and apparatus may be configured to create setup
information, and perform the initialization and performance
of an installation of a peripheral device of an electronic
device. One example method may include storing a device
identification (ID) of the peripheral device, extracting data
and creating a data structure from existent setup information.
The method may also include replacing a device ID in the
data structure with the device ID of the peripheral device,
and creating and storing a setup information file from
content of the data structure. The method may also include
creating and passing a request to at least one of a device
driver of an interface of the peripheral device and a bus that
initiates the installation of the peripheral device. The periph­
eral device may not be connected to the electronic device.

17 Claims, 3 Drawing Sheets

205
/

'208

204
/

INF FILES
CATALOG FILES

203
/

)~
KERNEL MODE -----+ USER MODE f---+ NEW DEVICE
PnP MANAGER +-- PnPMANAGER DLL

207
/

CFGMGRAPI

SETUP API

"-
209

/

/200
206

CO·INSTALLERS
CLASS INSTALLERS

210

/

"­
202

/201--------

d
rJl

,,'C
tit
N
'C
~
~=
="""'"

DEVICE

e
•
7J).
•

107
~

MI DEVICE I
~

/
~

~

PERIPHERAL BUS =~
INTERFACE

c
('D

~
N

~......:J

N
0....

I
0\

110
I

rFJ

=-('D
('D.....

PERIPHERAL DEVICE II I
....
0

109
....

INTERFACE (.H

\
111

NON VOLATILE
MEMORY

SYSTEM BUS· 105

106
. /

PROCESSING
UNIT

VOLATILE MEMORY !- 101 -.--
OPERATING -102
SYSTEM

100
/

APPLICATION
PROGRAMS - 103

PROGRAM
DATA -104

FIG.1

e
•
7J).
•

rFJ

=­('D
('D.....
N

o....
(.H

c
('D

~
N

~......:J

N
o....
0\

~
~
~

~=~

d
rJl

,,'C
tit
N
'C
~
~=
="""'"

205
/

204
/

INF FILES
CATALOG FILES I 208

203
/

"" ""
~ KERNEL MODE

...
USER MODE

...
NEW DEVICE

• PnP MANAGER PnP MANAGER DLL
~

A

207
/

CFGMGRAPI
"

r+
SETUP API

"l

'\
209

I
206

"" CO-I NSTALLERS...
CLASS INSTALLERS

I I

210

BUS /201

FIG.2

u.s. Patent Dec. 27, 2016 Sheet 3 of 3 US 9,529,740 Bl

(BEGIN) 300

+ I
LOAD DEVICE IDENTIFICATION

+ /301
QUERY SETUP INFORMATION

+ ,,302
EXTRACT SECTIONS 303 304

+ / /

REPLACE DEVICE IDENTIFICATION .. STORE SETUP
INFORMATION

+
CREATE DATA STRUCTURE /305

•
PASS DATA STRUCTURETO /306
PERIPHERAL BUS DRIVER

t
(END)

FIG.3

US 9,529,740 Bl
1

METHOD FOR CREATION OF A DEVICE
DRIVER FOR A PERIPHERAL DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
14/044,016, entitled METHOD FOR CREATION OF A
DEVICE DRIVER FOR A PERIPHERAL DEVICE", filed
on Oct. 2, 2013, now issued U.S. Pat. No. 8,819,299, issued
on Aug. 26, 2014, which is a continuation ofapplication Ser.
No. 121711,453, entitled "METHOD FOR CREATION OF
A DEVICE DRIVER FOR A PERIPHERAL DEVICE",
filed on Feb. 24, 2010, now issued U.S. Pat. No. 8,554,956,
issued on Oct. 8, 2013, the entire contents ofeach are hereby
incorporated by reference.

TECHNICAL FIELD OF THE INVENTION

The present invention relates to a method for connecting
an electronic device to a peripheral device generally and,
more particularly, to a method for creation and setup of a
device driver for peripheral devices that do not have a driver
that matches the device identifier of the peripheral device.

BACKGROUND OF THE INVENTION

A hardware abstraction layer (HAL), in modem operating
systems, is interposed between physical hardware and oper­
ating system (OS). The hardware abstraction layer (HAL) is
an abstraction layer, implemented in software, between the
physical hardware of a computer and the software that runs
on that computer. Its function is to hide differences in
hardware from most of the operating system kernel, so that
most of the kernel-mode code does not need to be changed
to run on systems with different hardware. On a electronic
device such as a computer, HAL can basically be considered
to be the driver for the motherboard and allows instructions
from higher level computer languages to communicate with
lower level components, such as directly with hardware.

Open source operating systems, and some other portable
operating systems also have a HAL, even if it's not explic­
itly designated as such. Some operating systems, such as
Linux, have the ability to insert one while running. Popular
expansion buses which are used on more than one architec­
ture are also abstracted, such as ISA, EISA, PCI, PCI-E
allowing, from the OS manufacturers point of view, drivers
to also be highly portable with a minimum of code modi­
fication.

As the HAL was introduced and is supplied by the
manufacturer of the OS the OS, thus its manufacturer gains
extensive control of the hardware. The OS is only capable to
identify physical existent hardware by specific information
held ready and passed by the hardware. A technique that
allows to actively build all required information for a
peripheral device before it is connected to the electronic
device and even is able to morph the physical existent
peripheral device into a device desired by the OS is not
currently known in the art. However, such technique would
offer significant advantages over the prior art.

A device driver, in electronic data processing, is a com­
puter program that allows a higher-level computer program
to interact with a hardware device. A device driver typically
communicates with the device through the system bus or a
communications subsystem to which the hardware is con­
nected. When a calling program invokes a routine in the
driver, the driver issues commands to the device. Once the

2
device sends data back to the driver, the driver may invoke
routines in the original calling program. Seen from the OS
manufacturer's point of view, a device driver simplifies
programming by acting as an abstraction layer between a
hardware device and the application and OS that uses it. The
higher-level application code can be written independently
of whatever specific hardware device it will ultimately
control, as it can interface with it in a standard way,
regardless of the underlying hardware. Every version of a

10 device requires its own hardware-specific specialized com­
mands. In contrast, most applications utilize devices by
means of simplified high-level device-generic commands.
The device-driver accepts these commands and breaks them
into a series of low-level device-specific commands as

15 required by the device being driven. By design device
drivers are hardware-dependent and operating-system-spe­
cific.

A virtual device driver as disclosed in U.S. Pat. No.
6,968,307 is a particular variant of device drivers. Instead of

20 enabling the OS to dialog with physical existent hardware,
a virtual device driver takes the opposite role and emulates
a piece of hardware, so that the OS and its application
programs have the illusion of accessing real hardware.
Attempts by the OS or an application program to access the

25 virtual hardware may also be routed to physical existent
hardware.

U.S. Pat. No. 7,571,445 describes a system and method
for dynamic device driver support in an open source oper­
ating system. This technique introduces a device driver for

30 a computer system that includes an open source operating
system, including an open source kernel. The device driver
is constructed from an open source service layer and a set of
precompiled driver modules that can be compiled against the
kernel of the operating system. A service layer provides an

35 interface between the kernel of the operating system and a
set of applicable driver modules. Although this method
allows the usage of one OS service layer for multiple
hardware devices hardware specific device drivers for each
peripheral device are still needed. A solution for physical

40 existent devices that do not have a driver that matches the
device identifier of the device is not included.

U.S. Pat. No. 6,754,725 discloses an USB peripheral that
contains its own device driver. The invention concerns a
peripheral device comprising a computer readable media

45 and an interface circuit. The computer readable media may
be configured to store instructions for operating the periph­
eral device. The interface circuit may be configured to
communicate the instructions to an operating system of a
computer in response to connection of the peripheral device

50 to the computer. Although this invention eliminates the need
to install a hardware specific device driver from separate
media it requires a computer readable media in the device
itself therefore making it impossible to use the invention on
devices that do not provide such a capability. As the inven-

55 tion still requires a hardware-specific device driver it does
not give an acceptable answer to the question how devices
that have no such driver can communicate with the com­
puter.

In U.S. Pat. No. 5,794,032 a system for the identification
60 and configuration of computer hardware peripherals is

shown that allows the automatic identification and configu­
ration of a computer peripheral. The system uses an initial­
ization program to send one or more query instructions to a
peripheral device. In response to the query instructions, the

65 peripheral drive replies with data that can be used to
uniquely identify the model number or type of the device.
The system then selects the appropriate software driver for

US 9,529,740 Bl
4

SUMMARY OF THE INVENTION

60

computer the os displays that a new device is found and
automatically establishes the relationship between the new
device and the previously installed driver through the new
device ID and class in order to let the new device be operated
normally. Although the invention describes a method to
make changes to an existing system configuration it requires
an already installed compatible device and a hardware­
specific device driver for the new device. In addition a
restart of the computer is mandatory. The required deletion

10 of existing registry entries most likely will be prohibited by
the os or my lead to serious corruption of the computers
registry.

All operations required to create and operate a peripheral
device of an electronic device can be performed without the
need to plug in the peripheral device to the electronic device.
Setup information for a peripheral device is extracted,
modified and stored to fit to a physical existent peripheral
device. The modified setup information is used to create a
data structure that is passed to the peripheral bus driver. As
the data structure contains a hot plug notification the recep­
tion causes the peripheral bus driver to initiate the setup
process for the peripheral device. As the data structure is
built from setup information that is available at the elec-
tronic device no additional user action is required. If used
with a physical existent peripheral device that has multiple
functional capabilities the present invention allows to trans­
fer the features of other devices to this device.

Example embodiments of the present invention provide
ways to perform all operations required to build setup
information, install and initialize a peripheral device of an
electronic device without the need to plug in the peripheral

35 device to the electronic device. Setup information for a
peripheral device is extracted, modified and stored to fit to
a physical existent peripheral device. The modified setup
information is used to create a data structure that is passed
to the peripheral bus driver. As the data structure contains a
hot plug notification the reception causes the peripheral bus
driver to initiate the setup process for the peripheral device.
As the data structure is built from setup information that is
available at the electronic device no additional user action is
required.

Ifused with a physical existent peripheral device that has
multiple functional capabilities the example embodiments of
the present invention permit the features of other devices to
be transferred to this device.

Other example embodiments ofthe present invention may
include devices that do not contain required electronic parts
for successful initialization of a setup process may be
installed. Compatible devices that do not have their own set
of device drivers may use setup data from existent devices.
Devices that are compatible but do not have signed drivers
may be used in an environment that requires signed drivers.
A device with multiple functional capabilities can lend
device information from already installed devices. Non PUP
devices can behave like PUP devices as the initial creation
process does not require the hardware to be connected.

An example embodiment of the present invention may
include a method for creation of setup information, and the
initialization and performance of an installation of a periph­
eral device of an electronic device. The method may include
storing a device identification (ID) of the peripheral device,
extracting data and creating a data structure from existent
setup information. The method may also include replacing a
device ID in the data structure with the device ID of the

3
the identified peripheral device and loads the selected driver.
This approach also requires appropriate hardware specific
drivers to be installed on the computer before the peripheral
device is plugged in. As the HAL of modem operating
systems permits direct hardware access this technique is
only applicable for operating systems that do not have such
intermediate layer.

u.s. Pat. No. 7,574,713 discloses methods, systems, and
computer program products for instantiating a device driver
for communication with a device by dynamically associating
the device driver at run-time with a device-specific and/or
service-specific software component. This may be done by
instantiating a device driver for communication with a
device by dynamically associating the device driver at
run-time with a device-specific software component. The 15

software component contains information that facilitates
communication with devices of a specific type. In other
embodiments, a device driver is instantiated by defining a
plurality of device parameters and associating one or more
of the plurality of device parameters with a service. The 20

device parameters that are associated with the service are
then dynamically communicated to the device driver at
run-time. Thus, a generic device driver may be dynamically
configured at run-time to communicate with devices of a
particular device type and/or device parameters may be 25

associated with a service and communicated to the device
driver.

These device parameters that are associated with a par­
ticular service and then passed to the device driver may
allow the device driver to collect data from a particular 30

device that is relevant to a particular service offering.
Although this invention allows ultraflexible access to and
configuration of devices it requires the lower level compo­
nents to be recognized and accessible by the HAL before the
methods can come into operation.

u.s. Pat. No. 7,275,118 shows an input/output (I/O)
device driver loading method for a data processing system
that involves communication of a secondary I/O device
driver to a data processing system using a primary I/O
device driver. An initial (first) device identification infor- 40

mation is passed from the peripheral device to the datapro­
cessing system. This first device identification information
corresponds to a first I/O device driver in the data processing
system. By utilizing the invention the device then transmits
a second I/O device driver from the peripheral device to the 45

data processing system using the first I/O device driver in the
data processing system. A second device identification infor­
mation is then passed from the peripheral device to the data
processing system.

Although this method allows the use of simplified generic 50

device class drivers to establish an initial communication
with the data processing system to transmit additional device
drivers and device identification information to the data
processing system it requires the device to be plugged into
the data processing system and a hardware specific device 55

driver to be available for the peripheral device. Also this
method does not give an acceptable answer to the question
on how devices can be installed and used that do not have
a hardware specific driver for any of the transmitted device
identification information.

u.s. Pat. No. 6,345,319 discloses a setting method for
installation of a plug and play device by utilizing the set-up
file (INF) of a hardware driver. The method reads the device
ID of a new device and copies the driver file of the new
device to the corresponding directory. The device ID and all 65

related device class of an already installed (original) device
is deleted from the computer's registry. After a restart of the

US 9,529,740 Bl
5 6

Referring to FIG. 1, a new peripheral device 109 is
connected to a peripheral device interface 110 or a periph­
eral bus 108 that is connected to the system bus 105 by a
peripheral bus interface 107, the electronic device 100
detects the presence of the connected peripheral device and
a configuration process (e.g., enumeration) begins.

An enumeration process, according to example embodi­
ments of the present invention assigns a unique address to
the connected peripheral device, queries the connected

10 peripheral device about requirements and capabilities, writes
data about the connected peripheral device to the OS 102 of
the electronic device and loads the appropriate software
device driver from a non volatile memory into the OS.

The device driver is a program that allows the OS and
15 application programs 103 to commnnicate correctly with the

peripheral device. The device driver may also provide
information to the electronic devices operating system about
the peripheral device and allows transfer of program data
104 to the peripheral device.

FIG. 3 is a flow chart illustrating a method of creating a
device driver and initializing the setup process in accordance
with an example embodiment of the present invention.
Initially, infonnation 301 may be collected about a desired
device and an appropriate setup infonnation file 304 may be

25 created for the device. Such a procedure may either be
perfonned by extracting installation infonnation from an
existing device or by utilizing a prebuilt setup infonnation
file. Setup information is stored in a plain text file. The plain
text file is divided into sections that contain infonnation

30 about the peripheral device's capabilities, dependencies and
requirements.

During the setup process, the OS loads the setup infor­
mation file into volatile memory, identifies the sections,
reads the content of each section and writes entries to the

35 registry configuration database of the electronic device.
Instead of making changes to the configuration database of
the electronic device, this method may be used to instead
build a temporary data structure that is required to perfonn
a set ofoperations. The temporary data structure may be held

40 in volatile memory such as a random access memory
(RAM), or be stored to non volatile memory such as a
physical storage device.

As the OS searches and selects the appropriate setup
information file for a peripheral device by comparing the

45 class and the device id ofthe peripheral device with the class
and the device id stored in the setup infonnation file, certain
changes may be necessary. For example, changes to the
contents of the data structure are necessary to create a setup
information file that accommodates the peripheral device.

The device id of the extracted or prebuilt setup infonna-
tion file stored in the temporary data structure is exchanged
with the device id 300 of the physical peripheral device that
would ultimately be plugged into the peripheral bus. This
may either be accomplished by user input, or by reading a

55 plain text file, which is supplied with the peripheral device
and which contains the device id. The content of the
modified data structure is used to build the setup infonnation
file 304 for the new device. This setup infonnation file is
stored to a location that the electronic device may be able to

60 locate such information.
In the next operation, the temporary data structure is used

to create a data structure 305 that is needed to initialize the
setup process for the new device without the need for the
physical device to be plugged into the peripheral bus or

65 interface of the electronic device. As the bus driver of a
peripheral bus is accessible and accepts configuration
requests from either the peripheral bus or the system bus, the

DETAILED DESCRIPTION OF THE
INVENTION

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of an exemplary operating
environment.

FIG. 2 is a block diagram showing involved components
when using the invention with Microsoft Windows Operat­
ing Systems

FIG. 3 is a flow chart illustrating a method of creating a
device driver and initializing the setup process in accordance
with the present invention.

peripheral device, and creating and storing a setup infonna­
tion file from content of the data structure. The method may
also include creating and passing a request to at least one of
a device driver of an interface of the peripheral device and
a bus that initiates the installation of the peripheral device,
wherein the peripheral device is not connected to the elec­
tronic device.

Another example embodiment of the present invention
may include an apparatus configured to create setup infor­
mation, and perfonn the initialization and performance of an
installation of a peripheral device of the apparatus. The
apparatus may include a memory configured to store a
device identification (ID) of the peripheral device. The
apparatus may also include a processor configured to per­
form various operations, such as, to extract data and create
a data structure from existent setup infonnation, replace a
device ID in the data structure with the device ID of the
peripheral device, create and store a setup information file
from content of the data structure, and create and pass a
request to at least one of a device driver of an interface of 20

the peripheral device and a bus that initiates the installation
of the peripheral device. The peripheral device may not be
connected to the apparatus.

It will be readily nnderstood that the components of the
present invention, as generally described and illustrated in
the figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the following
detailed description of the embodiments ofa method, appa­
ratus, and system, as represented in the attached figures, is
not intended to limit the scope of the invention as claimed,
but is merely representative of selected embodiments of the
invention.

The features, structures, or characteristics ofthe invention
described throughout this specification may be combined in
any suitable manner in one or more embodiments. For 50

example, the usage of the phrases "example embodiments",
"some embodiments", or other similar language, throughout
this specification refers to the fact that a particular feature,
structure, or characteristic described in connection with the
embodiment may be included in at least one embodiment of
the present invention. Thus, appearances of the phrases
"example embodiments", "in some embodiments", "in other
embodiments", or other similar language, throughout this
specification do not necessarily all refer to the same group
of embodiments, and the described features, structures, or
characteristics may be combined in any suitable manner in
one or more embodiments.

Example embodiments of the present invention may be
more described with reference to FIGS. 1-3. FIG. 1 is a
schematic diagram of a conventional digital electronic
device that can be used to implement various features,
according to example embodiments ofthe present invention.

US 9,529,740 Bl
7 8

fers control to kernel mode to load the drivers and try to start
the device. The appropriate CfgMgr function sends a request
to the user-mode PnP manager, which passes it to the
kernel-mode PnP manager. The PUP manager loads the
appropriate function driver 210 and any optional filter driver
211 for the device.

The PnP manager calls the DriverEntry routine for any
required driver that is not yet loaded. The PUP manager then
calls the AddDevice routine for each driver, starting with

10 lowerfilter drivers, then the function driver, and, lastly, any
upper filter drivers. The PnP manager assigns resources to
the device, if required, and sends a start request to the
device's drivers.

After finishing these operations, the physical existent
15 peripheral device may be plugged into the peripheral bus. As

the peripheral device sends a hot-plug notification, and its
device class and device id match with the driver installed by
the data structure, the electronic device assumes that the
peripheral device is plugged in and starts it.

Although the invention has been described in relation to
preferred embodiments, many variations, equivalents, modi­
fications and other uses will become apparent to those
skilled in the art. It is to be understood that the embodiments
described are illustrative only and the scope of the invention

25 is to be defined solely by the appended claims when con­
sidered with a full range of equivalents and modifications
(e.g., protocols, hardware devices, software platforms etc.)
thereto.

What is claimed is:
1. A method, comprising:
replacing a device identification (ID) in a data structure

with a device ID of a peripheral device;
automatically creating a request based on content of the

data structure when data structure creation is com­
pleted;

sending the data structure to a bus driver, the data struc­
ture including the request to add a new peripheral
device, a class of the peripheral device and the device
ID of the peripheral device;

responsive to receiving the data structure at the bus driver,
initiating a setup for the peripheral device; and

transmitting the request to a device driver of an interface
of the peripheral device and a bus that initiates the
installation of the peripheral device, wherein the trans­
mitting ofthe data structure causes a function driver for
the bus to determine that a new device is on the bus;

wherein entries are added to provide Plug and Play
functionality to the data structure generated from an
existent setup information file.

2. The method of claim 1, wherein a previously existent
setup information used to create the data structure is stored
in a file.

3. The method of claim 1, further comprising creating the
data structure and wherein a previously existent setup infor­

55 mation is stored in a configuration memory of the electronic
device.

4. The method of claim 1, further comprising passing an
instance ID to the driver ofthe peripheral interface or the bus
to identifY an instance of the peripheral device.

5. The method according to claim 1, wherein the bus is an
expansion bus.

6. The method according to claim 1, wherein the bus is a
peripheral bus.

7. The method of claim 1, wherein the peripheral device
65 supports the functionality of multiple devices.

8. The method ofclaim 1 comprising storing the device ID
of the peripheral device.

configuration request can thus be formed from the content of
the temporary data structure. The request can be built and
sent by either an application upon user request or a generic
multi purpose device driver or service that automatically
starts when the creation of the temporary data structure is
finished.

The data structure sent to the bus driver contains at least
the request to add a new device, and the class and the device
id, which are both taken from the temporary data structure.
The class and the device id allow the proper selection of the
setup information file built in the prior operation. Reception
of this data structure at the peripheral bus driver causes the
function driver for the bus device to determine that a new
device is on its bus.

FIG. 2 is a block diagram showing involved components
when using the above-noted application program operations
of the example embodiments with Microsoft Windows®
Operating Systems. Passing the data structure to the periph­
eral bus driver 202 causes actions that are similar to plug­
ging a peripheral device 200 into the peripheral bus 201. If 20

the data structure passed to the peripheral bus driver con­
tains a notification flag and the bus supports hot-plug
notification, the application program ofthe present invention
may be applied while the system is running. Now the
peripheral device is enumerated.

The bus driver 202, targeted by the data structure, receives
the hot-plug notification flag of the new device. The bus
driver notifies the kernel-mode PnP manager 203 that the list
of devices on the bus has changed. In this case, the change
is a new device on the bus. The kernel-mode PUP manager 30

queries the bus driver for a list of devices present on the bus
by sending a query for BusRelations. The bus driver
responds to the query with a current list of devices on the
bus. The kernel-mode PnP manager compares the new list
against the previous list and, in this case, determines that 35

there is one new device on the bus.
The kernel-mode PUP manager sends queries to the bus

driver to gather information about the new device, such as
the device's hardware IDs, compatible IDs, and device
capabilities. The kernel-mode PnP manager notifies the 40

user-mode PnP manager 204 that there is a device to be
installed. The user-mode PnP manager tries to perform a
trusted installation. Since the data structure, that is passed to
the peripheral bus driver, was generated from the setup
information file and the setup information file is stored at a 45

location where the electronic device expects the informa­
tion, a server side installation can be performed. The user­
mode PnP manager creates a new process using rund1l32.exe
and launches newdev.dll 205 to install the device.

The new device DLL calls setup API 206 device instal- 50

lation functions and CfgMgr API 207 PUP configuration
manager functions to carry out its installation tasks. The new
device DLL queries the system to build a list of possible
drivers for the device. As the setup information file stored in
the previous operations is available on the system and
matches the new device, the returned driver list contains the
required driver.

Setup uses the class and classGUID entries in the device's
INF version section to determine the device setup class. The
setup class determines the class installer and the class 60

co-installers for the device, if any. Device-specific co­
installers are listed in the appropriate INF section. Setup
then transfers control to kernel mode to load drivers and start
the device.

Once Setup has selected the driver for the device, copied
the appropriate driver files, registered any device-specific
co-installers, and registered any device interfaces, it trans-

9
US 9,529,740 Bl

10
9. An apparatus, comprising:
a memory; and
a processor communicably coupled to the memory, the

processor configured to:
replace a device identification (ID) in a data structure with

a device ID of a peripheral device;
automatically create a request based on content ofthe data

structure when data structure creation is completed,
send the data structure to a bus driver, the data structure

including the request to add a new peripheral device, a 10

class of the peripheral device and the device ID of the
peripheral device,

responsive to the data structure being received at the bus
driver, initiate a setup for the peripheral device, and

transmit the request to a device driver of an interface of 15

the peripheral device and a bus that initiates the instal­
lation ofthe peripheral device, wherein the transmitting
ofthe data structure causes a function driver for the bus
to determine that a new device is on the bus;

wherein entries are added to provide Plug and Play 20

functionality to the data structure generated from an
existent setup information file.

10. The apparatus of claim 9, wherein a previously
existent setup information used to create the data structure is
stored in a file. 25

11. The apparatus of claim 9, wherein a previously
existent setup information is stored in a configuration
memory of the apparatus.

12. The apparatus of claim 9, wherein the processor is
further configured to pass an instance ID to the driver of the 30

peripheral interface or the bus to identifY an instance of the
peripheral device.

13. The apparatus of claim 9, wherein the bus is an
expansion bus.

14. The apparatus of claim 9, wherein the bus is a
peripheral bus.

15. The apparatus of claim 9, wherein the peripheral
device supports the functionality of multiple devices.

16. A non-transitory computer readable medium compris­
ing a computer program that when executed causes a pro­
cessor to perform:

replacing a device identification (ID) in a data structure
with a device ID of a peripheral device;

automatically creating a request based on content of the
data structure when data structure creation is com­
pleted;

sending the data structure to a bus driver, the data struc­
ture including the request to add a new peripheral
device, a class of the peripheral device and the device
ID of the peripheral device;

responsive to receiving the data structure at the bus driver,
initiating a setup for the peripheral device; and

transmitting the request to a device driver of an interface
of the peripheral device and a bus that initiates the
installation of the peripheral device, wherein the trans­
mitting ofthe data structure causes a function driver for
the bus to determine that a new device is on the bus;

wherein entries are added to provide Plug and Play
functionality to the data structure generated from an
existent setup information file.

17. The non-transitory computer readable medium of
claim 16, wherein the processor is further configured to
perform passing an instance ID to the driver ofthe peripheral
interface or the bus to identify an instance of the peripheral
device.

* * * * *

