
111
US009292455B 1

(12) United States Patent
Wieland

(10) Patent No.:
(45) Date of Patent:

US 9,292,455 Bl
*Mar.22,2016

(54) INTERCONNECTION OF PERIPHERAL
DEVICES ON DIFFERENT ELECTRONIC
DEVICES

USPC 710/64
See application file for complete search history.

(56) References Cited
(71) Applicant: Open Invention Network LLC,

Durham, NC (US)

(72) Inventor: Martin Wieland, Munich (DE)

(73) Assignee: Open Invention Network, LLC,
Durham, NC (US)

U.S. PATENT DOCUMENTS

8,028,040 BI * 9/2011 Hobbs G06F 9/45558
370/389

2009/0222592 Al * 9/2009 Anderson H04N 1/32545
710/8

* cited by examiner

(21) Appl. No.: 14/859,634

Related U.S. Application Data

(63) Continuation of application No. 12/850,045, filed on
Aug. 4, 2010, now Pat. No. 9,141,564.

(51) Int. Cl.
G06F 13/12 (2006.01)
G06F 13/10 (2006.01)
G06F 9/44 (2006.01)
G06F 13/40 (2006.01)

(52) U.S. Cl.
CPC G06F 13/105 (2013.01); G06F 9/4416

(2013.01); G06F 13/4045 (2013.01)
(58) Field of Classification Search

CPC G06F 13/105; G06F 9/4416; G06F 113209 20 Claims, 5 Drawing Sheets

ABSTRACT(57)

A peripheral device connected to a local electronic device
which is connected to at least one communication network
can communicate with a peripheral device attached to a
remote electronic device as if the remote peripheral device
was locally attached. Data designated for the remote periph­
eral device is received by a local virtual device object and
transmitted to the remote electronic device via at least one of
the electronic devices communication interfaces or periph­
eral devices. Data received by the remote electronic device's
communication interface or peripheral device is written to the
peripheral device at the remote electronic device by a virtual
device object. For compensation of different transfer speeds
or outages between the peripheral device and the communi­
cation interface or another peripheral device the virtual
device provides the ability to utilize the virtual devices emu­
lation driver that is attached to the virtual device object as an
I/O buffer.

Primary Examiner - Ernest Unelus
(74) Attorney, Agent, or Firm - Haynes and Boone, LLP

Sep.21,2015

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

This patent is subject to a terminal dis­
claimer.

(*) Notice:

(22) Filed:

f ~,~ ~l~~::~~ ~~~.~ 2n:~

-~~~;~;1~~)~~~~:]
: Ert1t-.:t_<~tit:r~ ~
~ Drlii.1f t
...................................}

':.:Hti 212-

I
tl}B -~~~~~:-'~-~:;:~~~-l

:'~l'3' ~~ l.,t~.rfs())

...................._ !.:~ - ~~~ _ .

u.s. Patent Mar. 22,2016 Sheet 1 of 5 US 9,292,455 Bl

SYSTEM MEMORY

..................... "" "
RAM _,:<{ Ir·· · .,

I ViDEO I
I ADAPTER I
I I

/

~ --,-- 2,):~

t Vll~t}>~: I

-~ ~:.v~;T(~'~~~~:i
~ ElYH-:!.<ltinn: i

~--~';;~·-::~:t- i
~

r. ::()'3 2'G8

"2:~

L_._._ _._._ (_._._._ _._:~~ _._

u.s. Patent Mar. 22,2016 Sheet 2 of 5 US 9,292,455 Bl

CREATE GEr'JERIC DEVICE CLr'\SS

r-------:..-------,~ 301
RECEIVE QUERYING DEVICE CLASS

ENUMERATf NODES ~302
304

____ 303 /
r------Jl:.----...., r-----~

CREATE PRlfvlARY NODE ISSUE BUS
RESET....------------~-----.j

QUERY AVAILABlETARGET DEVICES - 305

FIG.3

~307 ~30B
r---~--i

NETli\IORK SERIAL PORT
INTERFACE INTERFACE

____ 309

IEEE 1394
INTERfACE

..._310

u.s. Patent Mar. 22,2016 Sheet 3 of 5 US 9,292,455 Bl

~400

401
""r----J~-~_-:-........_

QUERY TARGET DEVICE STATUS

I
403

FIG.4

501

\

SERIAL
DEVICE

..,...,.. 504 505
./

IEEE 1394
BUS NODE

FIG,S (END)

u.s. Patent Mar. 22,2016 Sheet 4 of 5 US 9,292,455 Bl

r---~----,/"'" 600
602

/"'" 601 ,----:./__---,

r--C-O-P-Y-D-E-~\-lIC-E."";~II-N-F-O-B-I\r1-A-T-IO-N--' STORE DEVICE
INFORMATION

ENUlV1ERATE UNALLOCATED MEMORY /"'" 603

,.,/" 605·607

INPUT
DEVICE

..,.- 608

ALLOCATE
READING
r'l1EMORV

OUTPUT
DEVICE

..,.- G09

ALLOCATE
WRITING
ME!'vlORV

INPUT OUTPUT
DEVICE

",,-""'" 610

ALLOCATE
READING
MEMORY

............ (m

ALLOCATE
WRITiNG
MEMORY

CREATE VIRTUAL DEVICE

(END)

FIG.6

u.s. Patent Mar. 22,2016 Sheet 5 of 5 US 9,292,455 Bl

l09

/

____ 707

~705

...-701

NO

\'\fRITING MEMORY

r----...:I----, 700

;\TTEMPTTO MOVE OAT;\

YES

_-704

____ 706
INCOMING

DATA

WRITING
MEMORY

WRITING {\,1Erv10RY
\

708

C Et'JD)
"'"-

710

FIG.1

US 9,292,455 Bl
1

INTERCONNECTION OF PERIPHERAL
DEVICES ON DIFFERENT ELECTRONIC

DEVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
12/850,045, entitled "INTERCONNECTION OF PERIPH­
ERAL DEVICES ON DIFFERENT ELECTRONIC
DEVICES", filed on Aug. 4, 2010, now issued U.S. Pat. No.
9,141,564, issued on Sep. 22, 2015, the entire contents are
hereby incorporated by reference in its entirety.

TECHNICAL FIELD

The present invention relates generally to the use ofperiph­
eral devices and communication interfaces as a means of
communication between electronic devices such as comput­
ers and, in particular, to bridging of peripheral devices via
transport media that operates at various speeds and commu­
nication standards such as synchronous and asynchronous.

BACKGROUND OF THE INVENTION

A computer system is comprised of different components
or devices that operate together to form the resultant system.
Typical computer devices such as the central processing unit
usually are supplied with the computer system initially
whereas other devices can be installed into the computer
system after the initial configuration of the system. The
devices of the computer system are generally coupled
together via interconnects which may be of several types,
such as system and peripheral bus.

Networks are typically comprised of a variety of different
electronic components or devices that are able to identifY and
communicate with each other by using an addressing and
communication scheme that is known by each participant.
The network allows computers to communicate with each
other and share resources and information. Computer net­
works are made up of basic hardware building blocks to
interconnect network nodes, such as Network Interface
Cards, Bridges, Hubs, Switches, and Routers. A network
card, network adapter or NIC (network interface card) is a
piece of computer hardware designed to allow computers to
communicate over a computer network. It provides physical
access to a networking medium.

Device drivers are well known in the art. When a device is
installed onto a computer by the user, a device driver has to be
loaded to enable communication with the device. A device
driver is software that is used to describe and control the
device for the operating system. A virtual device driver is a
specific type of device driver that, like a device driver for a
physical existent device, has full access to the operating sys­
tem kernel and is able to communicate directly to a physical
port. In difference to device drivers for existent hardware a
virtual device driver is loaded without a hardware device
being detected by the system. A virtual device driver manipu­
lates kernel mode code using existing hardware resources to
emulate a device that is not present on the computer. A virtual
driver is given more access than a traditional device driver
because it is not restricted to talking to just one particular
device.

Virtual device drivers are designed to handle hardware
device contention between multiple processes and to translate
or buffer data transfers from a virtual machine to hardware
devices. A virtual machine is a self-contained operating envi-

2
ronment that behaves as if it were a separate computer. When
two or more processes attempt to access the same device,
some method of contention management must be used. A
virtual device driver allows each process to act as though it
has exclusive access to the device.

For example, a virtual printer driver would provide the
printing process with a virtual printer port, and characters
written to the port would be written to a print spooler. The
virtual device driver would then send the job to the printer

10 when it becomes available. Another method would be to
assign the physical device to only one process at a time, so
that when a process attempts to access the device while it is in
use, the virtual device driver does not pass the request to the
actual hardware, and the process operates as though the hard-

15 ware did not exist. Virtual device drivers also virtualize inputl
output to the device and for example a virtual network device
driver translates this information into commands to be sent
across a network to a hardware server. A technique that allows
error free communication between devices that obligatory

20 require exchange of protocol status information's faster than
provided by the underlying network transport is not currently
known in the art. However, such a technique would offer
significant advantages over the prior art.

A method for bridging multiple network segments and
25 exposing the multiple network segments as a single network

to a higher level networking software on a bridging comput­
ing device as described in U.S. Pat. No. 7,089,335 is known in
the art. However, ifthis method is used to connect devices that
work with a time critical protocol and the transmission speed

30 ofthe network segments fall under a certain value communi­
cation errors occur at the devices.

As disclosed in U.S. Pat. No. 6,968,307 a technique for
creation and use of virtual device drivers on a serial bus is
already known. Beside the creation of virtual device drivers

35 also an extension of the peripheral bus even over a local area
network (LAN) and/or a wide area network (WAN) is
described. The method emulates the peripheral bus itselfwith
all its typical features and characteristics. This method does
not give an acceptable answer to the question how devices can

40 communicate successful if the underlying network media
itself does not meet the requirements of the peripheral bus in
concern of speed and timing.

An extension of fast peripheral buses like the institute of
electrical and electronics engineers (IEEE) 1394 "Firewire"

45 bus over comparatively slow transport media such as wireless
networks as disclosed by the IEEE 1394 TradeAssociation in
December 2001 allows error free communication between
endpoints of such an extended peripheral bus in terms ofbus
availability and clock time synchronization. However, a solu-

50 tion for devices that obligatory require the exchange of pro­
tocol information's at a speed that is higher than the wireless
network is not included.

The IEEE 1394 Trade associations white paper "Network­
ing IEEE 1394 Clusters via UWB over Coaxial Cable" dis-

55 closes and covers many parts of communication between
devices on a extended peripheral bus inclusive all timing
requirements of video and audio devices. However, this dis­
closure is solely based on using an underlying network tech­
nology that is quite as fast as the peripheral bus itself. Slow,

60 dropped out or unavailable networks are not covered by this
disclosure.

Virtualization technologies from various manufacturers
already allow the creation of additional virtual hardware
resources such as network interface card, hard disk and com­

65 puter system (Guest machine) on a physical existent com­
puter system (Host machine). This technique emulates a
machine with it's physical properties. By establishing inter-

US 9,292,455 Bl
3 4

DETAILED DESCRIPTION OF THE INVENTION

FIG. 2 is a block diagram of a system for transmission of
data between electronic devices.

FIG. 3 is a flow chart illustrating a method of creating a
virtual device in accordance with the present invention.

FIG. 4 is a flow chart illustrating a method oftransmission
of data from a peripheral device in accordance with the
present invention.

FIG. 5 is a flow chart illustrating a method of reception of
data by a device in accordance with the present invention.

FIG. 6 is a flow chart illustrating a method of creating a
virtual device ifused on electronic devices that have limited
or no hardware virtualization capabilities

FIG. 7 is a flow chart illustrating a method oftransmission
ofdata from a virtual device ifused on electronic devices that
have limited or no hardware virtualization capabilities

The invention may be more vividly described with refer­
ence to FIGS. 1-5. FIG. 1 is a schematic diagram of a con­
ventional digital electronic device that can be used to imple­
ment various aspects of the invention. The electronic device
100 includes a processing unit 101, a system memory 130 and
a system bus 105 that couples various system components
including the system memory to the processing unit. System
bus may be any of several types ofbus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. System
memory includes a read only memory (ROM) 131 and a
random access memory (RAM) 133.

A basic input/output system (BIOS) 132 containing the
basic routines that help to transfer information between ele­
ments within the electronic device 100, such as during start­
up, is stored in ROM 131. The electronic device 100 also

35 includes a hard disk drive 107 for reading from and writing to
a hard disk, an optical disk drive 111 for reading from or
writing to a removable optical disk 116, such as a CD ROM or
other optical media and a magnetic disk drive 109 for reading
from or writing to a removable magnetic disk 115. Magnetic

40 disk drive 109, Hard disk drive 107 and optical disk drive 111
are respectively connected to the system bus 105 by a mag­
netic disk drive interface 108, a hard disk drive interface 106
and an optical disk drive interface 111. The drives and their
associated media provide nonvolatile storage of electronic

45 devices readable instructions, data structures, program mod­
ules and other data for the electronic device 100.

Of course other types of media readable by electronic
devices which can store data that is accessible by an elec­
tronic device such as flash memory cards, digital video disks,

50 magnetic cassettes, random access memories (RAMs), read
only memories (ROMs), and the like, may also be used in the
exemplary environment. A number of program modules can
be stored on the hard disk, magnetic disk 115, optical disk
116, ROM 131 or RAM 133, including an operating system

55 134, one or more application programs 135, other program
modules 136, and program data 137.

A user can enter commands and information into the elec­
tronic device 100 through input or selection devices, such as
a keyboard 119 and a pointing device 117. The pointing

60 device 117 may comprise a mouse, touch pad, touch screen,
voice control and activation or other similar devices. These
and other input devices are often connected to the processing
unit 101 through a serial port interface 112 that is coupled to
the system bus, but may be connected by other interfaces,

65 such as a parallel port or a universal serial bus (USB).
A monitor 104 or other type of display device is also

connected to system bus 105 via an interface, such as a video

SUMMARY OF THE INVENTION

BRIEF DESCRIPTION OF THE FIGURES

A peripheral device connected to a local electronic device
which is connected to at least one communication network
can communicate with a peripheral device attached to a
remote electronic device as if the remote peripheral device
was locally attached. Data designated for the remote periph­
eral device is received by a local virtual device object and
transmitted to the remote electronic device via at least one of
the electronic devices communication interfaces or periph­
eral devices. Data received by the remote electronic device's
communication interface or peripheral device is written to the
peripheral device at the remote electronic device by a virtual
device object. For compensation of different transfer speeds
or outages between the peripheral device and the communi­
cation interface or another peripheral device the virtual
device provides the ability to utilize the virtual devices emu­
lation driver that is attached to the virtual device object as an
I/O buffer. As the invention provides a generic method for
virtualization ofa remote peripheral device it works indepen­
dent from specific types of devices and Operating Systems.
As the invention works with synchronous and asynchronous
communication standards and does not require a specific
network transport protocol it can be used with any available
communication interface or peripheral device of the elec­
tronic device.

connections between the physical devices of the host and the
devices of the emulated guest devices of the guest can be
attached to similar physical devices of the host.

However, devices on peripheral buses of the host machine
such as nodes ofa serial bus cannot be attached to nodes ofthe
peripheral bus of the guest machine because the peripheral
bus of the host is independent of the guest's bus. Even if
possible, if the architecture of the guest's operating system
fundamentally differs from the host's operating system the
attachment ofnewly added devices on peripheral buses ofthe 10

host to the guest's peripheral buses most likely fails because
the device is announced by the operating system and not the
machine.

In Digi International's AnywhereUSB Remote I/O Con­
centrator documentation another method is disclosed that is
applicable for accessing physically existent USB devices on 15

an external hardware device which is attached to a network
cable from a remote computer that is also connected to a
network. At the remote computer a service is used that con­
nects to the external hardware by using the TCP/IP network
transport protocol of the remote computer. Thru the network 20

connection the service establishes a socket connection to the
device. A hardware description information of each external
USB connector is installed on the local computer. The local
serial bus of the computer is extended with these new nodes
and makes them part of the local serial bus. By design, this 25

technique extends the local serial bus of the computer to the
external device by emulating a wired connection over the
network. The external device itself gets a part of the local
serial bus. This approach requires that the external device
with it's USB connectors can be reached by the network and
provides information's about the installed connectors to the 30

local service. If USB connectors are part of another comput­
er's local serial bus or different types of connectors are used
this method fails because the computer does not provide
information's about the nodes installed on his local serial bus
thru the network.

FIG. 1 is a block diagram of an exemplary operating envi­
ronment.

5
US 9,292,455 Bl

6
adapter 102. In addition to the monitor, electronic devices
typically include other peripheral output devices (not shown),
such as speakers and microphones.

An additional serial port in the fonn of an IEEE 1394
interface 103 may also be provided. The IEEE 1394 interface
103 couples an IEEE 1394 compliant serial bus 138 to the
system bus 105 or similar communication bus. The IEEE
1394 compliant serial bus 138, as known in the art, allows
multiple devices 139 to communicate with the electronic
device 100 and each other using high-speed serial channels.

The electronic device 100 can operate in a networked envi­
ronment using logical connections to one or more remote
electronical devices, such as a remote electronical device 121.
A remote electronic device 121 typically includes at least
some of the elements described above relative to the elec­
tronic device 100, although only a memory storage device
122 has been illustrated in FIG. 1. The logical connections
depicted in FIG. 1 include a local area network (LAN) 114
and a wide area network (WAN) 120. Such networking envi­
ronments are commonplace in offices, enterprise-wide com­
puter networks, intranets and the Internet.

When used in a LAN networking environment, the elec­
tronic device 100 is connected to a local network 114 through
a network interface or adapter 113. When used in a WAN
networking environment, local electronic device 100 and
remote electronic device 121 may both include a modem 118
or other means for establishing a communications over wide
area network 120, such as the Internet. Modem 118, which
may be internal or external, is connected to system bus 105
via serial port interface 112. In a networked environment,
program modules depicted relative to the electronic device
100, or portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network con­
nections shown are exemplary and other means of establish­
ing a communications link between the electronic devices can
be used. The existence of any of various well-known proto­
cols, such as TCPIIP, "ETHERNET", FTP, HTTP and the
like, is presumed, and the system can be operated in a client­
server configuration to permit retrievement of web pages
from a web-based server. For example, in an embodiment of
the present invention, the remote electronic device 121 is a
server having stored thereon one or more files that may be
accessed by the local electronic device 100. Procedures ofthe
present invention described below can operate within the
environment of the electronic device shown in FIG. 1.

Although the present invention is generally applicable to
an electronic device operating in accordance with the descrip­
tion shown above, the invention is applicable to any electronic
device that is able to uniquely identify attached peripheral
devices either by a reserved memory area or a nnique node id
like when using peripheral devices that are attached to a
peripheral interface that uses direct memory access control
methods. In FIG. 2, there is a system that may be used to
implement the present invention. A peripheral device 200
may be connected to an electronic device 201.

The electronic device 201 comprises a peripheral device
interface 202, which manages communications between the
physical bus 203 and the peripheral device 200.

A user of the electronic device 201 has the option of cre­
ating a virtual device object 205 that, after completing the
remaining steps represents an image ofthe remote peripheral
device 215 plugged into the remote electronic device 214. At
creation, the virtual device object loads an emulation driver
206 appropriate for a node of the peripheral bus of the
selected local attached peripheral device 200.

The user may want to emulate more than one device. In this
case, the user would repeat the process by creating a second

virtual device object based on peripheral device properties of
another locally attached device (not shown). The second vir­
tual device object would then load a second emulation driver
(not shown). Several virtual device objects 205 can be created
and can exist at the same time. One benefit of the present
invention is that it instantly allows a electronic device to
emulate multiple remote peripheral devices at the same time.

Another benefit of the present invention is that it does not
require that the remote device or the remote electronic device

10 be plugged in or connected to create a virtual device object. A
user mode application sends a request that tells the electronic
device to create a virtual device object with certain peripheral
device properties. The virtual device object loads an emula­
tion driver that supports the target functionality of a node of

15 the selected peripheral interface or bus. If the remote elec­
tronic device with the remote peripheral device attached to it
is connected to the local electronic device the virtual device
object is already present and is immediately capable of rep­
resenting the complete functionality of the peripheral device

20 of the remote electronic device.
Formerly, the electronic device would not be able to rep­

resent to its peripheral bus nodes functionality other than that
of a physical device attached to the local peripheral bus. For
this example, the device 200 is assumed to be a mass storage

25 node attached to an IEEE 1394 bus. The electronic device 200
would have a device driver (USB mass storage device driver)
that enables communicationwith the device 200. The user can
create a virtual device object 205 that represents an additional
member ofthe peripheral device class ofthe peripheral device

30 200 even though the device is not attached to the local elec­
tronic device.

At the local electronic device a virtual device object may be
created by modifYing the installation files of the peripheral
device 200. When a IEEE 1394 bus node is detected, an

35 additional virtual device entry is automatically created in the
registry. The virtual device object 205 uses an emulation
driver 206 for communication with the device 200.

In addition to being able to emulate multiple peripheral
devices at one time and not requiring that a device be plugged

40 in to emulate the device, another benefit ofthe present inven­
tion is that it allows "native" communication between physi­
cal existent and virtual devices across a peripheral bus. In the
previous example, the peripheral device 200 can communi­
cate using "native" language because it believes it is commu-

45 nicating with a node of the local peripheral bus instead of a
remote electronic device. In the present invention no transla­
tions are necessary because the peripheral device 200 com­
municates directly with the virtual device object 205.

In FIG. 3, a method ofcreating a virtual device is shown. At
50 step 300 a generic virtual device object is created by the

operating system of the electronic device that may be initial­
ized by the existent peripheral device itself that sends its
peripheral device properties. After the querying device class
is received 301 the peripheral devices attached to the periph-

55 eral interface or bus are enumerated 302. In case of a periph­
eral interface like the serial port interface enumeration is done
by the operating system followed by the creation of a new
primary node 303. In case of a node of a 1394 bus the driver
enumerates the existent nodes by reading the nodes from the

60 control status register and then adds a new node by assigning
a node id and writing the appropriate infonnation's to the
CSR. In such case the driver issues a reset 304 of the periph­
eral bus to allow the nodes an enumeration ofthe new device.
After setup of the primary node the second binding of the

65 virtual device is set. This requires querying available target
devices 305. this may either be done by the user or by using a
predefined setup file that automatically selects from available

US 9,292,455 Bl
7

communication interfaces 207 or peripheral devices that may
be counected to a remote electronic device. After querying the
available devices a device can be selected 306 from a list of
available interfaces like for example a network interface 307
a serial port interface 308 or an IEEE 1394 interface and be set
310 as the primary target device. After the primary target
device is selected additional secondary devices may be
selected 311 to guarantee error free communication even if
the primary device fails. This process can be repeated several
times for each device the electronic device should use.

In case ofusing the method to emulate a node ofa serial bus
a bus reset can be forced after the device object's exposition.
This bus reset causes all devices or nodes attached to the serial
bus to enumerate each other. Any other node may now see the
new node, the device chosen to emulate.

The method ofcreating a virtual device as shown in FIG. 3
can also be initialized by a request in the form of a data
structure that is sent to the application program interface
(API). The request to generate an additional node can be sent
by an upper level driver that is already loaded for a IEEE 1394
device The request could also be sent by an application upon
user request. Using a request to the 1394 bus driver software
can pass a data structure that causes the bus driver itselfto add
a virtual device and to fill in the data structure required for the
device. By setting an instance ID for the device the instance of
the device can be identified.

For enumeration of the emulation driver a string may be
passed to the driver that is used to generate the PUP ID's. To
allow a virtual device on an IEEE 1394 bus to remain present
despite a subsequent hardware or software reboot it may be
necessary to pass a flag to the driver that keeps the devices
state persistent. This will guarantee that the virtual device
object will be reported as existent after a reboot. The elec­
tronic devices operating system believes the emulated device
is present. In other words, the electronic devices operating
system can then "see" the emulated device. This is a benefit
because it allows any other node on the bus to communicate
"natively" with the device rather than using an additional
node that performs as a server/translator between the devices.
Generally, virtual device objects and the respective drivers
have the same access to the driver of the peripheral bus as
would a physical device object and its respective driver.

Because there is no physical target device there are differ­
ences in behavior with a virtual device object because there is
no physical target device. Normally the peripheral bus driver
fills in the target node identifier and the appropriate packet
size and transfer rate using information from the enumeration
procedure with a particular device.

Due to the fact that there is no physical device the virtual
device object has to provide all packet information because
there is no target device node. For example, a read/write
request will be intercepted and the virtual device object will
fill in the address information for the request. The bus driver
makes sure not to overwrite any fields. A request for alloca­
tion of a range exhibits different behavior if addressed to a
virtual device object. All address allocations from an emula­
tion driver will implicitly have the flag to broadcast access
enabled if post notification on the address range is required.
This is done to allow any external node to access the address
range used by the emulation driver to simulate the device.

In FIG. 4, a method oftransmission ofdata from a periph­
eral device in accordance with the present invention is shown.
Data 400 sent by the physical existent peripheral device to the
virtual device object is received by the virtual device 401. As
the virtual device object was generated based on descriptive
information's of the sending device the exchange of neces­
sary protocol status information's 402 may be provided by the

8
virtual device object. Upon reception 401 of data from the
peripheral device the virtual device object queries 403 the
primary transport device and checks if the device is available
for data transport. In case of a serial device this may be done
by simply checking the status of the signal levels of the
transmission and reception lines. Handshake lines, if any,
may also be checked. As the virtual device objects purpose is
to prevent from communication outages and failures it will
always report a successful state to the sending peripheral

10 device. While checking the target device status 404 the
incoming payload data may be stored in a buffer 405. This
buffer may either be located in the RAM of the electronic
device or in any kind of mass storage device attached to the
electronic device. The virtual device object may also use a

15 combination ofvolatile memory like RAM and mass storage
memory for example if the incoming payload data exceeds a
certain amount mass storage memory is used instead ofRAM.
The virtual device object may also be configured to buffer the
data according to the speed ofthe target device. The speed of

20 the target device can be detected by measuring by comparing
the time for filling up the initial buffer by the incoming data
with the time the data is read by the target device. It is even
possible to configure an algorithm that automatically sets the
amount ofbuffer for the device based on the different speeds

25 ofthe devices. Such algorithm may also automatically decide
about the location for storage ofbuffered data, either in vola­
tile or non volatile memory. As the virtual device object
always reports the successful reception of data in a timely
fashion to the sending device it prevents the sending device

30 from reporting errors or warnings. If the virtual device 0 bject
detects that the primary target device is finally not available,
it restarts querying the target device status by querying the
secondary target device. As the incoming payload data is
buffered anyways this process does not lead to loss of any

35 data. Upon a successful query of the target device the virtual
device object transmits the data to the target. As data may
arrive at the remote electronic device from various commu­
nication interfaces or peripheral device connections it is abso­
lutely necessary to guarantee exact identification of the

40 incoming data source by the receiving electronic device. This
is provided by the virtual device object in various ways. The
virtual device object can add its unique node id in the form of
a identification string that may either be in plain text or, for
binary data in the form ofa binary pattern. Due to the fact that

45 this data is never directly received by the peripheral device at
the remote electronic device this does not lead to any recep­
tion errors at the remote peripheral device. If a communica­
tion interface in form of a network interface card is used
unique identification of the source data can also be provided

50 by adding identification information such as a number or a
single flag to the data exchange protocol used by the commu­
nication interface. When using a network interface as the
preferred communication media also a fixed communication
port or a range ofports can be defined that allow identification

55 by the receiving device.
FIG. 5. shows a method of reception ofdata by a device in

accordance with the present invention. As previously
described data from a specific peripheral device may arrive at
the receiving electronic device from multiple devices either

60 communication interfaces or peripheral connections such as
cables or WIFI connections. To guarantee exact identification
of the incoming data the primary task of the virtual device
object at the receiving electronic device is to analyze the
incoming data. The architecture of the virtual device object

65 used at the receiving device is similar to the architecture ofthe
sending device. As described in FIG. 3 the virtual device
object is based on a generic device object that is able to create

US 9,292,455 Bl
9 10

existing peripheral device is copied 601 to either a internal or
a external memory location. This can be done by user input or
the electronic devices application program. The memory
areas of the electronic device that are already allocated by
existing peripheral devices are used to enumerate unallocated
memory 603 for the virtual device. All peripheral device
information copied in step 601 is saved 602 to allow subse­
quent configuration tasks. Depending on the capabilities 604
of the copied device infonnation about allocated memory

10 areas of the copied peripheral device is modified to point to
unallocated memory areas followed by allocation of the
newly defined memory areas for the virtual peripheral device.
In case the copied peripheral device is an input device 605 a
memory area for reading 608 is allocated. In case the copied

15 device is an Output device 606 a memory area for writing 609
is allocated. If the copied device is an In- and Output device
one memory area for reading 610 and one for writing 611 is
allocated. By adding this infonnation to the electronic
devices peripheral device configuration information file the

20 virtual device is created 612. As any attempt to read from this
device would give no results and an attempt to write to this
virtual electronic device would lead to an immediate buffer
overflow caused by non existence of a physical device that
picks up the data additional steps are required depending on

25 the capabilities of the electronic device and/or it's Operating
System.

In FIG. 7 a method of sending data by a virtual device is
shown. To send incoming data 700 received by the virtual
device out via the physical existent peripheral device data has

30 to be written to the virtual devices memory area for writing
701. Incoming data at this memory location causes the virtual
peripheral device to attempt to move the data 702 to the
writing memory area of the physical existent device 710. In
case the memory area ofthe physical existent device is locked

35 703 for example due to an active sending process of the
electronic device the memory area of the virtual device for
writing also changes to a locked state 704 to prevent from
buffer overflows. Another possible variant for sending data is
to create, as described above, a second virtual device that

40 receives 707 the data sent by the first virtual device in case the
memory area status ofthe physical existent device for writing
is locked 705. The memory area for writing 708 ofthis second
virtual device may be located in the electronic device or
attached to it as a peripheral storage device. In distinction to

45 the procedure for locking 704 the memory area of the first
virtual device if only a physical existent target device is
defined the status of the first virtual devices memory for
writing changes to unlocked as soon as the second virtual
device is selected. The second virtual device also attempts to

50 move 709 the data to the writing memory of the physical
existent device. The ability to subsequently use multiple
devices for transmission of data in combination with the
buffering scheme also allows packaging of small snippets of
data to a single data packet if used in conjunction with a

55 packet oriented network protocol that provides infonnation' s
about available sizes oftransfer units. In such case the second
virtual device retains all incoming data until the amount
equals the size of the specified transfer unit and then writes
the data to the memory area ofthe physical existent device for

60 writing. As the virtual device has a memory area allocated for
writing the size of this memory area may also be used to
define the packet size even if the physical existent device
again divides the incoming data into smaller packets or
merges them to fonn larger packets.

As the first virtual device is not counected to a physical
accessible interface reading data from a physical existent
peripheral device requires additional steps. Incoming data at

peripheral device or bus bindings by querying existent
peripheral device classes of the device. If the addressed
peripheral device at the receiving electronic device is a mem­
ber of the same peripheral device class as the peripheral
device at the sending electronic device the virtual device
object installed at the sending electronic device may be
installed from a setup file generated by the initial device. As
shown in FIG. 3 the virtual device object may create multiple
bindings. The first step is to enumerate the existent device
classes on the electronic device. At this device, the primary
node is the target for the desired data transfer. The primary
node may be automatically assigned by the virtual device
object or manually selected from a list ofavailable peripheral
devices from the user. Because there is no need for creation of
additional new bus nodes or new virtual peripheral devices a
bus reset after enumeration ofthe existent nodes on the target
bus is not necessary. As described in FIG. 3 it is necessary to
select at least one communication interface or peripheral
device at the virtual device object to inform the virtual device
object about possible interfaces for incoming data. When
installing the virtual device object on the target electronic
device it is very useful to use the existent setup information of
the sending device to guarantee that the unique node id trans­
mit by the sender leads incoming data to the desired periph­
eral device. As data may arrive from various interfaces the
virtual device objects primary task is to analyze the incoming
data for the node id specified in the virtual device object. As
this may take some time the virtual device object writes the
incoming data to a buffer that may be built up in all variations
as described in the previous chapters. If the virtual device
object has finished the analysis of the data, it removes the
identification data and transmits the payload data to the tar­
geted device.

For most requests, the behavior is identical between virtual
and physical devices. Although the invention has been
described in relation to preferred embodiments, many varia­
tions, equivalents, modifications and other uses will become
apparent to those skilled in the art. The scope of the present
invention should not be limited to the specific disclosure but
determined only by the appended claims.

The present invention is also applicable for electronic
devices that have limited or no hardware abstraction capabili­
ties.

In FIG. 6 a method of creating a virtual device in such an
electronic device is shown. At step 600, the infonnation about
existing peripheral devices is queried from the electronic
device. The devices main application program usually stores
this infonnation in a plain text file or a fonnatted file that,
combined with the electronic devices or it's operation sys­
tems rule set for reading or writing information's represents a
table. The infonnation may be stored in the electronic devices
system memory. Alternatively this infonnation can be stored
in an external storage media that may be accessible from the
electronic devices system bus or a peripheral device interface.
The infonnation contains descriptive infonnation's about the
peripheral device, its capabilities like Input-Output-device or
both and the memory areas allocated for the device. As such
simple devices mostly do not have peripheral devices that
allow viewing or direct input of information it may be neces­
sary to transmit the devices application program to an exter­
nal device that is capable to do so prior to making modifica­
tions. For transmission from and to the electronic device any
available peripheral device interface that allows In- and Out­
put may be used. If the electronic device provides remote
access like from an internal web server or a communication 65

protocol (e.g. Telnet) this may also be used to access the
device. To create a virtual device information about a single

11
US 9,292,455 Bl

12
a physical existent interface usually is unassigned and needs
to be picked up by the application program of the electronic
device for further processing. To read data from the physical
existent interface the virtual device initially locks the input
memory area of the physical existent device or performs
permanent read requests to the input memory area of the
physical existent device. This causes the physical existent
devices input memory area to change its status to be locked
for reading by parts of the electronic devices application
program or peripheral devices of the electronic device other
than the virtual device. On arrival ofdata at a physical existent
interface the virtual device copies the data to the input
memory area of the virtual device and clears the input
memory area of the physical existent device to allow recep­
tion of further data. Ifmore than one virtual device is defined
the data is cleared from the input memory area ofthe physical
existent device after it has been written to the last virtual
device. As the input memory area of the physical existent
device stays locked and is not accessible by the application
program or other devices than the virtual devices the descrip­
tive information about the physical existent peripheral device
may be changed to point to the input and/or output memory
area of a virtual device so no modifications of the electronic
devices initial application program are needed.

As the present invention allows transmission of data from
multiple virtual devices via one physical existent peripheral
device it is also possible to add additional information for
each virtual device to the data being written to the memory
area for writing ofthe physical peripheral device. Ifused in a
bus system were the node identifies itself by a unique node
identification each virtual device can add its own node iden­
tification to the data being written. The node identification
may be taken from the descriptive information of the virtual
device or be set by the application program of the electronic
device. As a result, a single electronic device with a single
peripheral communication interface can appear as multiple
devices on a bus system.

The invention can also be used to create multiple virtual
devices in manufacturer specific bus topologies (like CAN,
EIB, MAP) that assign a unique node id to each client. Such
"real time" buses work at a fixed speed where data packets are
transported in slots and identifY themselves by a node id that
is checked by each node of the bus. As incoming data on a
single physical interface may be received by multiple virtual
devices and each virtual device can have its own node id it is
possible to address multiple bus clients in one electronic
device. By adding a specific node id to unassigned data arriv­
ing at the memory area for writing of the virtual device it is
possible to transmit data from a specific bus node to other
nodes on the bus. As reception ofdata on the physical existent
interface of the electronic device leads to reception on all
virtual devices even such virtual devices can be directly
addressed as the virtual devices that do not have the node id
addressed simply discharge the data.

If the descriptive information about the physical existent
device is changed to point to the memory area assigned to a
virtual device all traffic targeted to the physical device by the
electronic devices application program can be simply redi­
rected to another physical device as the virtual device may be
connected to another physical existent peripheral or commu­
nication device. Such redirection can even be achieved if the
descriptive information ofthe physical existent device cannot
be modified. All data sent out by the electronic device may be
received by another device that leads this data to its own
virtual devices. As these virtual devices can be bound to
various physical existent devices redirection can be achieved
even if not possible in the sending device.

The present invention allows the use of multiple physical
communication or peripheral devices for transmission ofdata
from one sender. All ofthe electronic devices communication
or peripheral devices may simultaneously be available and
able to transfer data to the desired target. The route between
the local and the remote device varies dependent on the
selected peripheral or communication device and the target.
As the route and the transmission time for each target may
dynamically change due to traffic and intermediate devices on

10 the route in addition to the successive access of the defined
devices depending on their availability various routing pro­
tocol methods can be used for the selection of a preferred
device for specific targets.

To select a preferred communication interface or periph-
15 eral device for data transfer to a specific target the electronic

device itself may maintain a list of destinations and their
routes by periodically distributing and receiving routing
tables throughout the network. The electronic device may
also find routes on demand by flooding the network with route

20 request packets. The route may also be found on demand by
following present flows wherein the electronic device may
unicast consecutively when forwarding data while promoting
a new link. These known routing protocol methods may also
be combined by initially establishing the routing with some

25 already prospected routes followed by serving the demand
from additionally activated nodes through flooding the net­
work with route request packets. These known routing pro­
tocol methods are only applicable for communication tasks
were a single network protocol is used on all targeted nodes.

30 As the present invention supports the usage ofmultiple com­
munication and peripheral interfaces that usually work with
different communication protocols and transport media
adjusted routing protocol methods have to be used.

The virtual peripheral device in conjunction with the asso-
35 ciated physical existent peripheral and communication

devices builds up a functional unit in the electronic device.
The initial structure of this unit already contains a static
routing protocol method were the selection of the preferred
communication or peripheral device depends on its order and

40 its availability. For communication with a remote node the
unit always selects the first device. Only if this device is not
available the second device is selected. For flexibilization of
this static behavior the unit may add metric information for
each selectable peripheral or communication interface.

45 Depending on the capabilities of the electronic device this
information can be stored together with the descriptive infor­
mation of the unit or in a separate list, a unit specific routing
table that is assigned to the unit. Ifa metric is available for the
devices selection of the preferred device is done by compari-

50 son of the available metrics. If no additional routing algo­
rithms are used the metric value may be defined by the order
and the availability of the devices. If a device becomes
unavailable, its metric is increased by the unit. This results in
a change of the order of the preferred devices. Unit specific

55 routing information may be distributed to and received by
other available nodes. As the distributed routing information
contains information about the sending device, the available
communication and peripheral interfaces and their respective
metric values the information can be used by other nodes for

60 communication with peripheral devices at the electronic
device that distributed the information. Ifused in conjunction
with communication interfaces that support a packet oriented
network protocol the units routing information may be dis­
tributed by using a specific port number. Ifused with periph-

65 eral or communication interfaces that do not support such
distinction methods, the unit specific routing information
may also be exchanged by sending it together with the trans-

US 9,292,455 Bl
13 14

6. The method of claim 2, further comprising:
determining the availability of any communication inter­

face; and
performing at least one of redirecting and sending data to

the first available communication interface.
7. The method ofclaim 1, wherein information used to bind

the generic virtual device object to the communication inter­
face is taken from a setup file.

8. The method ofclaim 1, wherein information used to bind
the generic virtual device object to the communication inter­
face is inputted by the user.

9. The method of claim 1, wherein creation of the generic
virtual device object is initialized by an existent peripheral

15 device of the electronic device.
10. The method ofclaim 1, wherein creation ofthe generic

virtual device object is initialized by a request in the form of
a data structure.

11. The method of claim 1, wherein the assignment of the
device class is determined by a querying peripheral device.

12. The method ofclaim 1, wherein a parameter for assign­
ment of the device class is inputted by the user.

13. The method of claim 1, further comprising assigning
properties of the generic virtual device object by at least one
accessory parameter.

14. The method of claim 1, further comprising enumerat­
ing existent device nodes detected and device classes cur­
rently operating on the electronic device.

15. The method of claim 1, further comprising assigning a
primary node via the virtual device object, wherein the pri­
mary node is an intended target recipient of a data transfer.

16. The method of claim 1, wherein the device class ofthe
generic virtual device object is different from any communi­
cation interface device class previously bound to the at least
one communication interface of the electronic device.

17. The method ofclaim 1, wherein the determining ofthe
device class of the remote peripheral device attached to the
remote electronic device is the same as the device class ofthe
peripheral device attached to the electronic device occurs via
the data received via the generic virtual device object.

18. The method ofclaim 1, further comprising transmitting
the setup file from the electronic device to the remote elec­
tronic device.

19. A non-transitory computer readable medium compris­
ing instructions that, when executed by a processor, cause the
processor to perform:

creating a generic virtual device object representing an
image of a peripheral device attached to an electronic
device and comprising properties of the peripheral
device created by a user;

assigning the generic virtual device object to a device class
created by the user associated with the peripheral device;

binding the generic virtual device object to at least one
communication interface of the electronic device;

installing the generic virtual device object on a remote
electronic device using existent setup information ofthe
electronic device;

receiving data at the electronic device from a remote
peripheral device attached to the remote electronic
device;

generating a setup file via the electronic device responsive
to determining the device class ofthe remote peripheral
device attached to the remote electronic device is a same
one as the device class of the peripheral device attached
to the electronic device;

mitted payload data. This, of course requires a known syn­
chronization indicator for begin and end of routing informa­
tion on all participating nodes. Alternatively the routing
information for the unit can be transmitted by a communica­
tion interface of the electronic device that supports a packet
oriented network protocol but is not a member ofthe unit. To
define or adjust metrics for the peripheral or communication
interfaces of the unit additional methods can be used. For
communication interfaces that support a packet oriented net­
work protocol information about number of hops, speed of 10

the path, latency, path reliability, path bandwidth, load and
MTU can be taken into account whereas with peripheral
devices that just use simple point to point communication
only speed and latency information may be available for
definition of the metric value.

What is claimed is:
1. A method, comprising:
creating a generic virtual device object via a processor of

an electronic device, the generic virtual device object
representing an image of the peripheral device attached 20

to the electronic device and comprising properties ofthe
peripheral device created by a user;

assigning the generic virtual device object to a device class
created by the user associated with the peripheral device;

binding the generic virtual device object to at least one 25

communication interface of the electronic device;
installing the generic virtual device object on a remote

electronic device using existent setup information ofthe
electronic device;

receiving data at the electronic device from a remote 30

peripheral device attached to the remote electronic
device;

generating a setup file via the electronic device responsive
to determining the device class of the remote peripheral
device attached to the remote electronic device is a same 35

one as the device class ofthe peripheral device attached
to the electronic device;

installing a remote virtual device object at the remote
peripheral device via the setup file to provide the elec­
tronic device with access to remotely emulate the remote 40

peripheral device; and
emulating the remote peripheral device from the electronic

device via an emulation driver loaded by the remote
virtual device object;

wherein multiple remote virtual device objects are created 45

for respective emulation drivers; and
wherein multiple remote peripheral devices are emulated

simultaneously.
2. The method of claim 1, wherein data received by the

generic virtual device object from sources other than its 50

binded communication interface is redirected to at least one
assigned communication interface.

3. The method of claim 1, wherein data received by the
communication interface that is bound to the generic virtual
device object is redirected to the generic virtual device object. 55

4. The method of claim 2, further comprising:
creating an intermediate buffer between the generic virtual

device object and its communication interface; and
sending data designated for the communication interface to

the buffer and sending data from the buffer to the com- 60

munication interface.
5. The method of claim 3, further comprising:
creating an intermediate buffer between the communica­

tion interface and the generic virtual device object; and
sending data designated for the generic virtual device 65

object to the buffer and sending data from the buffer to
the generic virtual device object.

15
US 9,292,455 Bl

16
installing a remote virtual device object at the remote

peripheral device via the setup file to provide the elec­
tronic device with access to remotely emulate the remote
peripheral device; and

emulating the remote peripheral device from the electronic
device via an emulation driver loaded by the remote
virtual device object;

wherein multiple remote virtual device objects are created
for respective emulation drivers; and

wherein multiple remote peripheral devices are emulated 10

simultaneously.
20. A system, comprising:
a remote electronic device;
a remote peripheral device
a peripheral device; and 15

an electronic device including a processor configured to:
create a generic virtual device object that represents an

image of the peripheral device and comprising prop­
erties of the peripheral device created by a user;

wherein the generic virtual device object is assigned to a 20

device class created by the user associated with the
peripheral device;

bind the generic virtual device object to at least one
communication interface of the electronic device;

install the generic virtual device object on the remote
electronic device using existent setup information of
the electronic device;

receive data at the electronic device from the remote
peripheral device communicably coupled to the
remote electronic device;

generate a setup file via the electronic device responsive
to a determination that the device class of the remote
peripheral device attached to the remote electronic
device is a same one as the device class of the periph­
eral device attached to the electronic device;

install a remote virtual device object at the remote
peripheral device via the setup file to provide the
electronic device with access to remotely emulate the
remote peripheral device; and

emulate the remote peripheral device from the electronic
device via an emulation driver loaded by the remote
virtual device object;

wherein multiple remote virtual device objects are cre­
ated for respective emulation drivers; and

wherein multiple remote peripheral devices are emu­
lated simultaneously.

* * * * *

