
111
US008935434Bl

(12) United States Patent
Wieland

(10) Patent No.:
(45) Date of Patent:

US 8,935,434 Bl
Jan. 13,2015

(*) Notice:

(54) INTERCONNECTION OF PERIPHERAL
DEVICES ON DIFFERENT ELECTRONIC
DEVICES

(75) Inventor: Martin Wieland, Munich (DE)

(73) Assignee: Open Invention Network, LLC,
Durham, NC (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 296 days.

(21) Appl. No.: 12/711,440

8,544,092 B2 * 9/2013 Hermann et al. 726/23
2003/0070063 Al 4/2003 Boyle et al.
2003/0088711 Al 5/2003 Tabares et al.
2003/0132956 Al 7/2003 Duncan et al.
2003/0225928 Al 12/2003 Paul
2004/0230710 Al 11/2004 Goodman
2005/0138229 Al * 6/2005 Sartore 710/15
2005/0257226 Al 11/2005 Belvin et al.
2006/0230261 Al 10/2006 Yoshimura et al.
2007/0255883 Al * 11/2007 Ulenas 710/313
2008/0005403 Al * 1/2008 Di Flora 710/56
2008/0040526 Al 2/2008 Suzuki et al.
2008/0168158 Al * 7/2008 Bantz et al. 709/219
2009/0150909 Al * 6/2009 Barreto et al. 719/324
2011/0035758 Al * 2/2011 Stoyanov et al. 719/324

OTHER PUBLICATIONS

References Cited

U.S. PATENT DOCUMENTS

Filed: Feb. 24, 2010

ABSTRACT(57)

Axelson, Jan; USB Complete, 3rd ed.*
VMware, White Paper, "Virtualization Overview", May 2006.

(Continued)

18 Claims, 5 Drawing Sheets

A method and apparatus of performing a data transmission
from an electronic device or a peripheral device of an elec­
tronic device to a peripheral device of a remote electronic
device is disclosed. One example method of performing the
data transmission may include transmitting data designated
for the remote peripheral device to a local virtual device
object. The data that is received by the local virtual device
object is transmitted via at least one communication interface
or peripheral device of the electronic device to at least one
remote communication interface or peripheral device of the
remote electronic device. The data arriving at the least one
remote communication interface or peripheral device of the
remote electronic device is received by a remote virtual
device object and transmitted to the designated remote
peripheral device.

Primary Examiner - Eric Oberly
(74) Attorney, Agent, or Firm - Haynes and Boone, LLP

(2006.01)
(2006.01)
(2006.01)
(2006.01)

8/1994 Crick
6/2000 Garney
7/2001 Chrabaszcz
9/2003 Liu et al.

12/2004 Kikuchi 370/338
11/2005 Chrysanthakopoulos
8/2006 Aiken et al.

11/2009 Frank et al. 726/15

Int. Cl.
G06F 3/00
G06F 5/00
G06F 13/10
G06F 9/455
U.S. Cl.
CPC G06F 13/105 (2013.01); G06F 9/45504

(2013.01)
USPC 710/8; 710/17; 710/52
Field of Classification Search
CPC G06F 9/45504; G06F 13/105
USPC 710/8,17,52
See application file for complete search history.

5,339,432 A
6,081,850 A
6,263,387 Bl
6,618,386 Bl
6,831,908 B2 *
6,968,307 Bl
7,089,335 B2
7,620,981 B2 *

(58)

(52)

(56)

(22)

(51)

214

213 \
201

200 \

\ \I -202 -210 ' 215 -223
~ Peripheral ~ ~ Peripheral ~

Peripheral Device - 203 Peripheral Device - 216
Device Interface Device Interfacer·········1-205 r·········,-218

.: yirtual, I- .: Virtual, ; .=
204 ... 1 Processing ~ IDevlceDbJect:- 217 ... 1 Processing ~ I DevlceDbJect:+-

Unit ~::::l:::: Unit ~::::l::::
. ,

: Emulation :: Emulation 1

~ Peripheral ~ I Driver 1 ~ Perip~eral ~ 1 Driver 1

Peripheral Device -,-,•••_.1 Peripheral DeVice__ .1,
Device Interface 206 212- Device Interface 219 224-

\ \
\ 208 HCommunication \ 221 ~ Communication

209 Interface 222 Interface

211
, 225 '220

I 207 I

US 8,935,434 Bl
Page 2

VMware, White Paper, "Understanding Full Virtualization,
Paravirtualization, and Hardware Assist", Oct. 2007.
Microsoft Virtual Server 2005 R2 Technical Overview Dec. 2005.
Microsoft Virtual Server Host Clustering Step-by-Step Guide for
Virtual Server 2005 R2 Nov. 2005.
Microsoft "IEEE 1394 and the Windows Platform" Dec. 2001.
IEEE 1394 Trade association "AWhite Paper on the IEEE 1394-Coax
Bridging Standard".
"Networking IEEE 1394 Clusters via UWB over Coaxial Cable"
Aug. 2008.

(56) References Cited

OTHER PUBLICATIONS

DIGI International, Minnetonka "AnywhereUSB Remote 1/0 Con­
centrator Installation Guide" Apr. 2008.
1394 Open Host Controller Interface Specification I Release 1.1 Lee
Wilson et al. Jun. 2001.
"Open Host Controller Interface Specification for USB", Compaq et
al. Sep. 1999.
"Industrial-grade, IEEE 1394a I IEEE1394b compliant bus driver for
Windows" Thesycon Systemsoftware & Consulting GmbH, Feb.
2003.
"Physical Access Attacks with Firewire" Ruxcon 2006, Boileau A.,
Oct. 2006.
"USB/IP: A Transparent Device Sharing Technology over IP Net­
work" Takahiro Hirofuchi et al. Sep. 2005.

* cited by examiner

u.s. Patent Jao.13,2015 Sheet 1 of 5 US 8,935,434 Bl

.....------+---l MONITOR
SYSTEM MEMORY \
................
ROM-131 130

18105-132 I
................

RAM -133

OPERATING
SYSTEM -134

101

/
PROCESSING

UNIT

102

/

VIDEO
ADAPTER

103 138

/ A /

IEEE 1394
INTERFACE ~_-~

\
104

\8
APPLICATION /\.. /'... 13~

PROGRAMS-135 A i i l r IDE~CE.II
OTHER SYSTEM BUS -105

PROGRAM -136 \n r1 r"""'-""] [] [l r
MODULES • V V V "J V IALOCAL AREA NETWORK

HARD MAGNETIC OPTICAL SERIAL NElWORK II
DISK DISK DRIVE DRIVE PORT

PROGRAM INTERFACE INTERFACE INTERFACE INTERFACE INTERFACE 1\ \
DATA -137 11 114

\ \ \ \ \
106 108 110 112 113

c ~-
107 109 L..f -_

111

APPLICATION
PROGRAMS \

123

..---:;" 119 WIDE 121

116/~ l MODEM I REMOTE

OPERATING APPLICATION OTHER ,,136 PROGRAM ~~ \ COMPUTER

SYSTEM PROGRAMS PROGRAM DATA '- \ 117 118 120 \ ..I

"134 "135 MODULES "137

FIG.l

~
~

?....
~(H

N
o....
Ul

~
7J).
•
~
~
~

~=~

rFJ

=­('D
('D.....
N
o....
Ul

214

213 \

201

200 \

\ \I -202 -210 t -215 -223
Peripheral

-203
Peripheral

-216Peripheral I- Device - Peripheral ~ Device I--

Device Interface Device Interface
r---------I- 205 r--------j_ 218
1 Virtual I- I Virtual I +-

204 '" Processing -: Device Object 1-
217'" Processing I-- -: Device Object 1...

Unit ~ I 10----1----'-----1---- Unit
r---- ---- r---- ----
: Emulation :

. 1
: Emulation I

Peripheral , Driver I Peripheral I Driver I

Peripheral Device I-- "'--_-' Peripheral Device I-- .. _--------,
~ '\ ~ '\

Device Interface 206 212-
,..

Device Interface 219 224-
\ \

\ 208 Communication I. \ 221 Communication -
209 I- Interface 222 - Interface

211 \ 225 \

I 207 I 220

FIG.2

d
rJl
QO

\cw
tit
~
W
~

=""'"'

u.s. Patent Jao.13,2015 Sheet 3 of 5 US 8,935,434 Bl

...------.....::------, "...,.. 300
CREATE GENERIC DEVICE CLASS

...-------..:.-------,,,...,.. 301
RECEIVE QUERYING DEVICE CLASS

304

/
ISSUE BUS

RESET

/'302
ENUMERATE NODES

/'303,..- ...a- ...,----.....

CREATE PRIMARY NODE

+-----------_......._-_......
QUERY AVAILABLETARGET DEVICES - 305

"...,.. 307 "...,.. 308
,..-_.&----,

NETWORK SERIAL PORT
INTERFACE INTERFACE

/'309

IEEE 1394
INTERFACE

SET TARGET DEVICE
,.,. 310

FIG.3

u.s. Patent Jao.13,2015 Sheet 4 of 5 US 8,935,434 Bl

.;"'" 400

.. ISEND DATA
401 I IPROTOCOL

"-
RECEIVE DATA 402

QUERYTARGET DEVICE STATUS

/
403

FIG.4

NO

~406

TRANSMIT DATA

".",405

BUFFER

u.s. Patent Jao.13,2015

501

\

Sheet 5 of 5

RECEIVE DATA

US 8,935,434 Bl

.."., 500

.."., 502

ANALYZE DATA

.."., 504

SERIAL
DEVICE

BUFFER DATA

505
./

IEEE 1394
BUS NODE

506

\
TRANSMIT DATA

FIG.5 (END)

US 8,935,434 Bl
2

process at a time, so that when a process attempts to access the
device while it is in use, the virtual device driver does not pass
the request to the actual hardware, and the process operates as
though the hardware did not exist. Virtual device drivers also
virtualize input/output to the device and for example a virtual
network device driver translates this information into com­
mands to be sent across a network to a hardware server.

A technique that allows error free communication between
devices that obligatory require exchange of protocol status

10 information's faster than provided by the underlying network
transport is not currently known in the art. However, such a
technique would offer significant advantages over the prior
art.

A method for bridging multiple network segments and
15 exposing the multiple network segments as a single network

to a higher level networking software on a bridging comput­
ing device as described in U.S. Pat. No. 7,089,335 is known in
the art. However, ifthis method is used to connect devices that
work with a time critical protocol and the transmission speed

20 ofthe network segments fall under a certain value communi­
cation errors occur at the devices.

As disclosed in U.S. Pat. No. 6,968,307 a technique for
creation and use of virtual device drivers on a serial bus is
already known. Beside the creation of virtual device drivers

25 also an extension of the peripheral bus even over LAN and
WAN networks is described. The method emulates the
peripheral bus itself with all its typical features and charac­
teristics. This method does not give an acceptable answer to
the question how devices can communicate successful if the

30 underlying network media itself does not meet the require­
ments of the peripheral bus in concern of speed and timing.

An extension of fast peripheral buses like the IEEE 1394
"Firewire" bus over comparatively slow transport media such
as wireless networks as disclosed by the IEEE 1394 Trade

35 Association in December 2001 allows error free communica­
tion between endpoints of such an extended peripheral bus in
terms of bus availability and clock time synchronization.
However, a solution for devices that obligatory require the
exchange of protocol information's at a speed that is higher

40 than the wireless network is not included.
The IEEE 1394 Trade associations white paper "Network­

ing IEEE 1394 Clusters via UWB over Coaxial Cable" dis­
closes and covers many parts of communication between
devices on a extended peripheral bus inclusive all timing

45 requirements of video and audio devices. However, this dis­
closure is solely based on using an underlying network tech­
nology that is quite as fast as the peripheral bus itself. Slow,
dropped out or unavailable networks are not covered by this
disclosure.

Virtualization technologies from various manufacturers
already allow the creation of additional virtual hardware
resources such as network interface card, hard disk and com­
puter system (Guest machine) on a physical existent com­
puter system (Host machine). This technique emulates a

55 machine with it's physical properties. By establishing inter­
connections between the physical devices of the host and the
devices of the emulated guest devices of the guest can be
attached to similar physical devices of the host. However,
devices on peripheral buses ofthe host machine such as nodes

60 of a serial bus cannot be attached to nodes of the peripheral
bus of the guest machine because the peripheral bus of the
host is independent ofthe guest's bus. Even ifpossible, if the
architecture of the guest's operating system fundamentally
differs from the host's operating system the attachment of

65 newly added devices on peripheral buses of the host to the
guest's peripheral buses most likely fails because the device is
announced by the operating system and not the machine.

BACKGROUND OF THE INVENTION

TECHNICAL FIELD OF THE INVENTION

1
INTERCONNECTION OF PERIPHERAL

DEVICES ON DIFFERENT ELECTRONIC
DEVICES

A computer system is comprised of different components
or devices that operate together to form the resultant system.
Typical computer devices such as the central processing unit
usually are supplied with the computer system initially
whereas other devices can be installed into the computer
system after the initial configuration of the system. The
devices of the computer system are generally coupled
together via interconnects which may be of several types,
such as system and peripheral bus.

Networks are typically comprised of a variety of different
electronic components or devices that are able to identifY and
communicate with each other by using an addressing and
communication scheme that is known by each participant.
The network allows computers to communicate with each
other and share resources and information. Computer net­
works are made up of basic hardware building blocks to
interconnect network nodes, such as Network Interface
Cards, Bridges, Hubs, Switches, and Routers. A network
card, network adapter or NIC (network interface card) is a
piece of computer hardware designed to allow computers to
communicate over a computer network. It provides physical
access to a networking medium.

Device drivers are well known in the art. When a device is
installed onto a computer by the user, a device driver has to be
loaded to enable communication with the device. A device
driver is software that is used to describe and control the
device for the operating system. A virtual device driver is a
specific type of device driver that, like a device driver for a
physical existent device, has full access to the operating sys­
tem kernel and is able to communicate directly to a physical
port. In difference to device drivers for existent hardware a
virtual device driver is loaded without a hardware device
being detected by the system. A virtual device driver manipu­
lates kernel mode code using existing hardware resources to
emulate a device that is not present on the computer. A virtual 50

driver is given more access than a traditional device driver
because it is not restricted to talking to just one particular
device.

Virtual device drivers are designed to handle hardware
device contention between multiple processes and to translate
or buffer data transfers from a virtual machine to hardware
devices. A virtual machine is a self-contained operating envi­
ronment that behaves as if it were a separate computer. When
two or more processes attempt to access the same device,
some method of contention management must be used. A
virtual device driver allows each process to act as though it
has exclusive access to the device. For example, a virtual
printer driver would provide the printing process with a vir­
tual printer port, and characters written to the port would be
written to a print spooler. The virtual device driver would then
send the job to the printer when it becomes available. Another
method would be to assign the physical device to only one

The present invention relates generally to the use ofperiph­
eral devices and communication interfaces to communicate
between electronic devices such as computers and, in particu­
lar, to bridging ofperipheral devices via transport media that
operates at various speeds and communication standards such
as synchronous and asynchronous.

US 8,935,434 Bl
3

In Digi International's AnywhereUSB Remote I/O Con­
centrator documentation another method is disclosed that is
applicable for accessing physically existent USB devices on
an external hardware device which is attached to a network
cable from a remote computer that is also connected to a
network. At the remote computer a service is used that con­
nects to the external hardware by using the TCP/IP network
transport protocol of the remote computer. Thru the network
connection the service establishes a socket connection to the
device. A hardware description information of each external 10

USB connector is installed on the local computer. The local
serial bus of the computer is extended with these new nodes
and makes them part of the local serial bus. By design, this
technique extends the local serial bus of the computer to the
external device by emulating a wired connection over the 15

network. The external device itself gets a part of the local
serial bus. This approach requires that the external device
with it's USB connectors can be reached by the network and
provides information's about the installed connectors to the
local service. If USB connectors are part of another comput- 20

er's local serial bus or different types of connectors are used
this method fails because the computer does not provide
information's about the nodes installed on his local serial bus
thru the network.

25

SUMMARY OF THE INVENTION

4
peripheral device of a remote electronic device. The appara­
tus may include a transmitter configured to transmit data
designated for the remote peripheral device to a local virtual
device object, the data received by the local virtual device
object is transmitted via at least one communication interface
or peripheral device of the apparatus to at least one remote
communication interface or peripheral device of the remote
electronic device. The apparatus may also provide that the
data received at the least one remote communication interface
or peripheral device of the remote electronic device is
received by a remote virtual device object and transmitted to
the designated remote peripheral device.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of an exemplary operating envi­
ronment.

FIG. 2 is a block diagram of a system for transmission of
data between electronic devices.

FIG. 3 is a flow chart illustrating a method of creating a
virtual device in accordance with the present invention.

FIG. 4 is a flow chart illustrating a method oftransmission
of data from a peripheral device in accordance with the
present invention.

FIG. 5 is a flow chart illustrating a method of reception of
data by a device in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in the
figures herein, may be arranged and designed in a wide vari­
ety of different configurations. Thus, the following detailed
description of the embodiments of a method, apparatus, and
system, as represented in the attached figures, is not intended
to limit the scope of the invention as claimed, but is merely
representative of selected embodiments of the invention.

The features, structures, or characteristics of the invention
described throughout this specification may be combined in
any suitable marmer in one or more embodiments. For
example, the usage of the phrases "example embodiments",
"some embodiments", or other similar language, throughout
this specification refers to the fact that a particular feature,
structure, or characteristic described in connection with the
embodiment may be included in at least one embodiment of
the present invention. Thus, appearances of the phrases
"example embodiments", "in some embodiments", "in other
embodiments", or other similar language, throughout this
specification do not necessarily all refer to the same group of
embodiments, and the described features, structures, or char­
acteristics may be combined in any suitable manner in one or
more embodiments.

Example embodiments of the present invention may be
more vividly described with reference to FIGS. 1-5. FIG. 1 is
a schematic diagram of a conventional digital electronic
device that can be usedin association with various embodi-
ments of the present invention. The electronic device 100
includes a processing unit 101, a system memory 130 and a
system bus 105 that couples various system components
including the system memory to the processing unit. System
bus may be any of several types ofbus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. System
memory includes a read only memory (ROM) 131 and a

65 random access memory (RAM) 133.
A basic input/output system (BIOS) 132 containing the

basic routines that help to transfer information between ele-

A peripheral device connected to a local electronic device
which is connected to at least one communication network
can communicate with a peripheral device attached to a 30

remote electronic device as if the remote peripheral device
was locally attached. Data designated for the remote periph­
eral device is received by a local virtual device object and
transmitted to the remote electronic device via at least one of
the electronic devices communication interfaces or periph- 35

eral devices. Data received by the remote electronic device's
communication interface or peripheral device is written to the
peripheral device at the remote electronic device by a virtual
device object. For compensation of different transfer speeds
or outages between the peripheral device and the communi- 40

cation interface or another peripheral device the virtual
device provides the ability to utilize the virtual devices emu­
lation driver that is attached to the virtual device object as an
I/O buffer. As the invention provides a generic method for
virtualization ofa remote peripheral device it works indepen- 45

dent from specific types of devices and Operating Systems.
As the invention works with synchronous and asynchronous
communication standards and does not require a specific
network transport protocol it can be used with any available
communication interface or peripheral device of the elec- 50

tronic device.
One embodiment of the present invention may include a

method of data transmission from an electronic device or a
peripheral device of an electronic device to a peripheral
device ofa remote electronic device. The method may include 55

transmitting data designated for the remote peripheral device
to a local virtual device object, the data received by the local
virtual device object is transmitted via at least one commu­
nicationinterface or peripheral device ofthe electronic device
to at least one remote communication interface or peripheral 60

device ofthe remote electronic device. The method may also
provide that the data arriving at the at least one remote com­
munication interface or peripheral device ofthe remote elec­
tronic device is received by a remote virtual device object and
transmitted to the designated remote peripheral device.

Another example embodiment of the present invention
may include an apparatus configured transmit data to a

5
US 8,935,434 Bl

6
ments within the electronic device 100, such as during start­
up, is stored in ROM 131. The electronic device 100 also
includes a hard disk drive 107 for reading from and writing to
a hard disk, an optical disk drive 111 of an optical drive
interface 110 for reading from or writing to a removable
optical disk 116, such as a CD ROM or other optical media
and a magnetic disk drive 109 for reading from or writing to
a removable magnetic disk 115. Magnetic disk drive 109,
Hard disk drive 107 and optical disk drive 111 are respec­
tively connected to the system bus 105 by a magnetic disk 10

drive interface 108, a hard disk drive interface 106 and an
optical disk drive interface 111. The drives and their associ­
ated media provide nonvolatile storage of electronic devices
readable instructions, data structures, program modules and 15

other data for the electronic device 100.
Of course other types of media readable by electronic

devices which can store data that is accessible by an elec­
tronic device such as flash memory cards, digital video disks,
magnetic cassettes, random access memories (RAMs), read 20

only memories (ROMs), and the like, may also be used in the
exemplary environment.

A number of program modules can be stored on the hard
disk, magnetic disk 115, optical disk 116, ROM 131 or RAM
133, including an operating system 134, one or more appli- 25

cation programs 135 and 123, other program modules 136,
and program data 137.

A user can enter commands and information into the elec­
tronic device 100 through input or selection devices, such as
a keyboard 119 and a pointing device 117. The pointing 30

device 117 may comprise a mouse, touch pad, touch screen,
voice control and activation or other similar devices.

These and other input devices are often connected to the
processing unit 101 through a serial port interface 112 that is 35

coupled to the system bus, but may be connected by other
interfaces, such as a parallel port or a universal serial bus
(USB).

A monitor 104 or other type of display device is also
connected to system bus 105 via an interface, such as a video 40

adapter 102. In addition to the monitor, electronic devices
typically include other peripheral output devices (not shown),
such as speakers and microphones.

An additional serial port in the form of an IEEE 1394
interface 103 may also be provided. The IEEE 1394 interface 45

103 couples an IEEE 1394 compliant serial bus 138 to the
system bus 105 or similar communication bus. The IEEE
1394 compliant serial bus 138, as known in the art, allows
multiple devices 139 to communicate with the electronic
device 100 and each other using high-speed serial channels. 50

The electronic device 100 can operate in a networked envi­
ronment using logical connections to one or more remote
electronic devices, such as a remote electronic device 121. A
remote electronic device 121 typically includes at least some
of the elements described above relative to the electronic 55

device 100, although only a memory storage device 122 has
been illustrated in FIG. 1. The logical connections depicted in
FIG. 1 include a local area network (LAN) 114 and a wide
area network (WAN) 120. Such networking environments are
commonplace in offices, enterprise-wide computer networks, 60

intranets and the Internet.
When used in a LAN networking environment, the elec­

tronic device 100 is connected to a local network 114 through
a network interface or adapter 113. When used in a WAN
networking environment, local electronic device 100 and 65

remote electronic device 121 may both include a modem 118
or other means for establishing a communications over wide

area network 120, such as the Internet. Modem 118, which
may be internal or external, is connected to system bus 105
via serial port interface 112.

In a networked environment, program modules depicted
relative to the electronic device 100, or portions thereof, may
be stored in the remote memory storage device. It will be
appreciated that the network connections shown are exem­
plary and other means of establishing a communications link
between the electronic devices can be used. The existence of
any ofvarious well-known protocols, such as TCPIIP, "ETH­
ERNET'" FTP, HTTP and the like, is presumed, and the
system can be operated in a client-server configuration to
permit retrieval of web pages from a web-based server. For
example, in one example embodiment of the present inven­
tion, the remote electronic device 121 is a server having
stored thereon one or more files that may be accessed by the
local electronic device 100. Procedures of the example
embodiments of the present invention described below can
operate within the environment of the electronic device
shown in FIG. 1.

Although the example embodiments of the present inven­
tion are generally applicable to an electronic device operating
in accordance with the description shown above, the inven­
tion is applicable to any electronic device that is able to
uniquely identifY attached peripheral devices either by a
reserved memory area or a unique node id, such as, when
using peripheral devices that are attached to a peripheral
interface that uses direct memory access control methods. In
FIG. 2, there is a system that maybe used in accordance with
an example embodiment of the present invention. A periph­
eral device 200 may be connected to an electronic device 201.
The electronic device 201 comprises a peripheral device
interface 202, which manages communications between the
physical bus 203 and the peripheral device 200. The periph­
eral device 200 also includes a processing unit 204 coupled to
a peripheral device interface 208 connected to anotherperiph­
eral device 209. The peripheral device 200 has a link to a
virtual device object 205 which has a link 212 to a commu­
nication interface 207 and another link 211 to the peripheral
device 209.

A user of the electronic device 201 has the option of cre­
ating a virtual device object 205 that, after completing the
remaining operations represents an image of the remote
peripheral device 215 plugged into the remote electronic
device 214. At creation, the virtual device object loads an
emulation driver 206 appropriate for a node of the peripheral
bus of the selected local attached peripheral device 200.
Similiar to the electronic device 201, the remote device 214
includes a peripheral device 213 in communication with a
peripheral device interface 216 which is connected to a pro­
cessing unit 217, another peripheral device interface 221 of
another peripheral device 222. A virtual device object 218 has
a link 223 to the peripheral device and operated by an emu­
lation driver 219. A communication interface 220 communi­
cates via link 224 to the virtual device object 218, which has
a link 225 to the peripheral device 222.

The user may want to emulate more than one device. In this
case, the user would repeat the process by creating a second
virtual device object based on peripheral device properties of
another locally attached device (not shown). The second vir­
tual device object would then load a second emulation driver
(not shown). Several virtual device objects 205 can be created
and can exist at the same time. One benefit of the present
invention is that it instantly allows an electronic device to
emulate multiple remote peripheral devices at the same time.

Another example embodiment of the present invention
may provide a feature that does not require the remote device

US 8,935,434 Bl
7 8

network interface 307 a serial port interface 308 or an IEEE
1394 interface 309 and be set 310 as the primary target device.

After the primary target device is selected additional sec­
ondary devices may be selected 311 to guarantee error free
communication even if the primary device fails. This process
can be repeated several times for each device the electronic
device should use. In case of using the method to emulate a
node of a serial bus a bus reset can be forced after the device
object's exposition. This bus reset causes all devices or nodes

10 attached to the serial bus to enumerate each other. Any other
node may now see the new node, the device chosen to emu­
late.

The method of creating a virtual device as shown in the
example embodiment of FIG. 3 can also be initialized by a

15 request in the form of a data structure that is sent to the
application program interface (API). The request to generate
an additional node can be sent by an upper level driver that is
already loaded for an IEEE 1394 device. The request could
also be sent by an application upon user request. Using a

20 request to the 1394 bus driver software can pass a data struc­
ture that causes the bus driver itselfto add a virtual device and
to fill in the data structure required for the device. By setting
an instance ID for the device the instance ofthe device can be
identified.

For enumeration of the emulation driver a string may be
passed to the driver that is used to generate the PnP ID's. To
allow a virtual device on an IEEE 1394 bus to remain present
despite a subsequent hardware or software reboot it may be
necessary to pass a flag to the driver that keeps the device's

30 state persistent. This will provide the virtual device object to
be reported as existent after a reboot. The electronic devices
operating system believes the emulated device is present. In
other words, the electronic devices operating system can then
"see" the emulated device.

Allowing the emulated device to be seen allows any other
node on the bus to communicate "natively" with the device
rather than using an additional node that performs as a server!
translator between the devices. Generally, virtual device
objects and the respective drivers have the same access to the

40 driver ofthe peripheral bus as would a physical device object
and its respective driver.

Because there is no physical target device there are differ­
ences in behavior with a virtual device object because there is
no physical target device. Normally the peripheral bus driver

45 fills in the target node identifier and the appropriate packet
size and transfer rate using information from the enumeration
procedure with a particular device. Due to the fact that there
is no physical device the virtual device object has to provide
all packet information because there is no target device node.

50 For example, a read/write request will be intercepted and the
virtual device object will fill in the address information for the
request. The bus driver does not overwrite any fields.

A request for allocation ofa range exhibits different behav­
ior if addressed to a virtual device object. All address alloca-

55 tions from an emulation driver will implicitly have the flag to
broadcast access enabled if post notification on the address
range is required. This is done to allow any external node to
access the address range used by the emulation driver to
simulate the device.

In FIG. 4, according to an example embodiment of the
present invention, a method of transmission of data from a
peripheral device in accordance with the present invention is
shown. Data 400 sent by the physical existent peripheral
device to the virtual device object is received by the virtual

65 device 401. As the virtual device object was generated based
on descriptive information ofthe sending device the exchange
ofnecessary protocol status information 402 may be provided

or the remote electronic device to be plugged in or connected
to create a virtual device object. A user mode application
sends a request that tells the electronic device to create a
virtual device object with certain peripheral device proper­
ties. The virtual device object loads an emulation driver that
supports the target functionality of a node of the selected
peripheral interface or bus. If the remote electronic device
with the remote peripheral device attached to it is connected
to the local electronic device the virtual device object is
already present and is immediately capable of representing
the complete functionality of the peripheral device of the
remote electronic device.

Conventionally, the electronic device would not be able to
represent to its peripheral bus nodes functionality other than
that of a physical device attached to the local peripheral bus.

In accordance with one example embodiment of the
present invention, the device 200 is assumed to be a mass
storage node attached to an IEEE 1394 bus. The electronic
device 200 would have a device driver (USB mass storage
device driver) that enables communication with the device
200. The user can create a virtual device object 205 that
represents an additional member of the peripheral device
class of the peripheral device 200 even though the device is
not attached to the local electronic device.

At the local electronic device a virtual device object may be 25

created by modifYing the installation files of the peripheral
device 200. When an IEEE 1394 bus node is detected, an
additional virtual device entry is automatically created in the
registry. The virtual device object 205 uses an emulation
driver 206 for communication with the device 200.

In addition to being able to emulate multiple peripheral
devices at one time and not requiring that a device be plugged
in to emulate the device, another example embodiment ofthe
present invention permits "native" communication between
physical existent and virtual devices across a peripheral bus. 35

In the previous example, the peripheral device 200 can com­
municate using "native" language because it believes it is
communicating with a node ofthe local peripheral bus instead
ofa remote electronic device. In the present example embodi­
ment of the present invention no translations are necessary
because the peripheral device 200 communicates directly
with the virtual device object 205.

In FIG. 3, a method of creating a virtual device is shown,
according to an example embodiment of the present inven­
tion. At operation 300 a generic virtual device object is cre­
ated by the operating system ofthe electronic device that may
be initialized by the existent peripheral device itselfthat sends
it's peripheral device properties. After the querying device
class is received 301 the peripheral devices attached to the
peripheral interface or bus are enumerated 302. In case of a
peripheral interface like the serial port interface enumeration
is done by the operating system followed by the creation of a
new primary node 303. In case of a node of a 1394 bus the
driver enumerates the existent nodes by reading the nodes
from the control status register and then adds a new node by
assigning a node id and writing the appropriate information's
to the CSR. In such case the driver issues a reset 304 of the
peripheral bus to allow the nodes an enumeration of the new
device.

After setup of the primary node the second binding of the 60

virtual device is set. This requires querying available target
devices 305. Such an operation may either be done by the user
or by using a predefined setup file that automatically selects
from available communication interfaces 207 or peripheral
devices that may be connected to a remote electronic device.
After querying the available devices a device can be selected
306 from a list of available interfaces like for example a

US 8,935,434 Bl
9 10

The architecture of the virtual device object used at the
receiving device is similar to the architecture of the sending
device. As described in FIG. 3, the virtual device object may
be based on a generic device object that is able to create a
peripheral device or bus bindings by querying existent
peripheral device classes of the device. If the addressed
peripheral device at the receiving electronic device is a mem­
ber of the same peripheral device class as the peripheral
device at the sending electronic device, the virtual device

10 object installed at the sending electronic device may be
installed from a setup file generated by the initial device.

As shown in FIG. 3, the virtual device object may create
multiple bindings. The first operation is to enumerate the
existent device classes on the electronic device. At this

15 device, the primary node is the target for the desired data
transfer. The primary node may be automatically assigned by
the virtual device object or manually selected from a list of
available peripheral devices from the user. Because there is no
need for creation of additional new bus nodes or new virtual

20 peripheral devices, a bus reset, after enumeration ofthe exis­
tent nodes on the target bus, is not necessary.

As described in FIG. 3, it is necessary to select at least one
communication interface or peripheral device at the virtual
device object to inform the virtual device object about pos-

25 sible interfaces for incoming data. When installing the virtual
device object on the target electronic device it may be neces­
sary to use the existent setup information of the sending
device to guarantee that the unique node id transmitted by the
sender provides incoming data to the desired peripheral

30 device.
Since data may arrive from various interfaces the virtual

device object's primary task is to analyze the incoming data
for the node id specified in the virtual device object. As this
may take some time, the virtual device object writes the

35 incoming data to a buffer that may be built up, according the
example embodiments described above. If the virtual device
object has finished the analysis of the data it removes the
identification data and transmits the payload data to the tar-
geted device.

For most requests, the behavior is the same between virtual
and physical devices. Although the invention has been
described in relation to preferred embodiments, many varia­
tions, equivalents, modifications and other uses will become
apparent to those skilled in the art. The scope of the present

45 invention should not be limited to the specific disclosure but
determined only by the appended claims.

What is claimed is:
1. A method ofdata transmission from an electronic device

or a peripheral device of an electronic device to a remote
50 peripheral device of a remote electronic device, the method

comprising:
receiving a request at the electronic device to create a local

virtual device object comprising properties of the
remote peripheral device;

creating the local virtual device object by an operating
system of the electronic device, the local virtual device
object configured to operate on the electronic device and
emulate the remote peripheral device ofthe remote elec­
tronic device;

transmitting data designated for the remote peripheral
device to the local virtual device object, wherein the
local virtual device object is configured to add source
identification information to the data;

buffering the data at the local virtual device object;
transmitting a report message from the local virtual device

object to the electronic device indicating the successful
reception of data at the local virtual device object;

by the virtual device object. Upon reception 401 ofdata from
the peripheral device the virtual device object queries 403 the
primary transport device and checks if the device is available
for data transport. In case of a serial device this may be done
by simply checking the status of the signal levels of the
transmission and reception lines. Handshake lines, if any,
may also be checked.

As the virtual device object's operation will reduce the
likelihood of communication outages and failures, it will
therefore report a successful state to the sending peripheral
device. While checking the target device status 404 the
incoming payload data may be stored in a buffer 405. This
buffer may either be located in the RAM of the electronic
device or in any kind of mass storage device attached to the
electronic device, and may be accessed to transmit data 406.

The virtual device object may also use a combination of
volatile memory, such as, RAM and mass storage memory,
for example, if the incoming payload data exceeds a certain
amount of mass storage memory that is used instead of the
RAM. The virtual device object may also be configured to
buffer the data according to the speed ofthe target device. The
speed of the target device can be detected by measuring by
comparing the time for filling up the initial buffer by the
incoming data with the time the data is read by the target
device. It is even possible to configure an algorithm that
automatically sets the amount of buffer for the device based
on the different speeds ofthe devices. Such an algorithm may
also automatically decide about the location for storage of
buffered data, either in volatile or non volatile memory.

As indicated above, the virtual device object will report the
successful reception ofdata in a timely fashion to the sending
device. By reporting successful reception, the sending device
may avoid reporting unnecessary errors or warnings. If the
virtual device object detects that the primary target device is
finally not available, it restarts the operation of querying the
target device status by querying the secondary target device.

The incoming payload data is buffered and there is no loss
of any data. Upon a successful query of the target device the
virtual device object transmits the data to the target. As data
may arrive at the remote electronic device from various com- 40

munication interfaces or peripheral device connections it may
be necessary to properly identifY the incoming data source by
the receiving electronic device. Such an operation may be
provided by the virtual device object in various ways.

The virtual device object may add its unique node id in the
form ofan identification string that may either be in plain text
or, for binary data, in the form of a binary pattern. Due to the
fact that this data is never directly received by the peripheral
device at the remote electronic device this does not lead to any
reception errors at the remote peripheral device.

Ifa communication interface in form ofa network interface
card is used, unique identification ofthe source data can also
be provided by adding identification information, such as, a
number or a single flag to the data exchange protocol used by
the communication interface. When using a network interface 55

as the communication media, a fixed communication port, or
a range ofports can be defined that allow identification by the
receiving device.

FIG. 5. shows a method of reception ofdata by a device in
accordance with an example embodiment of the present 60

invention. As previously described, data from a specific
peripheral device may arrive at the receiving electronic
device from multiple devices having either communication
interfaces or peripheral connections, such as, cables or WIFI
connections. To guarantee exact identification of the incom- 65

ing data, the virtual device object at the receiving electronic
device will analyze the incoming data.

US 8,935,434 Bl
11 12

45

50

10

tus to the at least one of a remote communication inter­
face and the remote peripheral device of the remote
electronic device;

wherein the data designated for the remote peripheral
device is received by a remote virtual device object; and

wherein the remote virtual device object is configured to
identifY and remove the source identification data from
the received data, and transmit a payload data of the
received data to the designated remote peripheral device.

10. The apparatus of claim 9, wherein the designated
remote peripheral device is identified by the payload data
received.

11. The apparatus of claim 9, wherein the designated
remote peripheral device is identified by a content of a com­
munication protocol of the communication interface.

12. The apparatus of claim 9, wherein at least one commu­
nication interface or peripheral device of the apparatus uses
an asynchronous communication standard.

13. The apparatus of claim 9, wherein at least one commu­
nication interface or peripheral device ofthe apparatus uses a
synchronous communication standard.

14. The apparatus ofclaim 8, wherein the peripheral device
of the apparatus is connected to a peripheral bus.

15. The apparatus of claim 9, wherein a buffer size of the
buffer dynamically increases or decreases according to a
transfer speed ofthe peripheral device that transmits the data.

16. The apparatus of claim 15, wherein the buffer size
dynamically increases or decreases according to the transfer

30 speed ofthe communication interface or the peripheral device
used for data transmission by the apparatus.

17. A non-transitory computer readable storage medium
configured to store a computer program that when executed
by a processor performs data transmission from an electronic
device or a peripheral device of an electronic device to a
remote peripheral device of a remote electronic device, the
processor being further configured to perform:

receiving a request at the electronic device to create a local
virtual device object comprising properties of the
remote peripheral device;

creating the local virtual device object by an operating
system of the electronic device, the local virtual device
object configured to operate on the electronic device and
emulate the remote peripheral device ofthe remote elec­
tronic device;

transmitting data designated for the remote peripheral
device to the local virtual device object, wherein the
local virtual device object is configured to add source
identification information to the data the data;

buffering the data at the local virtual device object;
transmitting a report message from the local virtual device

object to the electronic device indicating the successful
reception of data at the local virtual device object;

querying the remote peripheral device via the local virtual
device object to determine the remote peripheral device
is available to receive data;

responsive to a successful query of the remote peripheral
device, transmitting the data buffered by the local virtual
device object via at least one of a communication inter­
face and a peripheral device ofthe electronic device to at
least one of a remote communication interface and the
remote peripheral device of the remote electronic
device;

receiving by a remote virtual device object the data desig­
nated for the at least one of the remote communication
interface and the peripheral device of the remote elec­
tronic device, wherein the remote virtual device object is

querying the remote peripheral device via the local virtual
device object to determine the remote peripheral device
is available to receive data;

responsive to a successful query of the remote peripheral
device, transmitting the data buffered by the local virtual
device object via at least one of a communication inter­
face and a peripheral device ofthe electronic device to at
least one of a remote communication interface and the
remote peripheral device of the remote electronic
device;

receiving by a remote virtual device object the data desig­
nated for the at least one of the remote communication
interface and the peripheral device of the remote elec­
tronic device, wherein the remote virtual device object is
configured to identifY and remove the source identifica- 15

tion data of the received data; and
transmitting by the remote virtual device object a payload

data of the received data to the designated remote
peripheral device.

2. The method of claim 1, wherein the designated remote 20

peripheral device is identified by the payload data received.
3. The method of claim 1, wherein the designated remote

peripheral device is identified by a content of a communica­
tion protocol of the communication interface.

4. The method of claim 1, wherein at least one communi- 25

cation interface or peripheral device of the electronic device
uses an asynchronous communication standard.

5. The method of claim 1, wherein at least one communi­
cation interface or peripheral device of the electronic device
uses a synchronous communication standard.

6. The method ofclaim 1, wherein the peripheral device of
the electronic device is counected to a peripheral bus.

7. The method of claim 1, wherein a buffer size of the
buffering dynamically increases or decreases according to a
transfer speed ofthe peripheral device that transmits the data. 35

8. The method of claim 7, wherein the buffer size dynami­
cally increases or decreases according to the transfer speed of
the communication interface or the peripheral device used for
data transmission by the electronic device.

9. An apparatus configured to transmit data to a remote 40

peripheral device ofa remote electronic device, the apparatus
comprising:

a receiver configured to receive a request at the electronic
device to create a local virtual device object comprising
properties of the remote peripheral device;

a processor configured to create the local virtual device
object utilizing an operating system, the local virtual
device object configured to operate on the electronic
device and emulate the remote peripheral device of the
remote electronic device;

a transmitter configured to transmit data designated for the
remote peripheral device to the local virtual device
object, wherein the local virtual device object is config­
ured to add source identification information to the data;

a buffer configured to buffer the data at the local virtual 55

device object, wherein the local virtual device object is
configured to transmit a report message indicating the
successful reception ofthe data at the local virtual device
object;

wherein the transmitter transmits a query to the remote 60

peripheral device via the local virtual device object to
determine the remote peripheral device is available to
receive data;

wherein responsive to a successful query of the remote
peripheral device, the data buffered at the local virtual 65

device object is transmitted via at least one ofa commu­
nication interface and a peripheral device ofthe appara-

US 8,935,434 Bl
13 14

configured to identifY and remove the source identifica­
tion data of the received data; and

transmitting by the remote virtual device object a payload
data of the received data to the designated remote
peripheral device.

18. The non-transitory computer readable storage medium
of claim 17, wherein a buffer size of the buffering dynami­
cally increases or decreases according to the transfer speed of
the communication interface or the peripheral device used for
data transmission by the electronic device. 10

* * * * *

