
111
US008554957B 1

(12) United States Patent
Wieland

(10) Patent No.:
(45) Date of Patent:

US 8,554,957 Bl
*Oct. 8, 2013

(75) Inventor: Martin Wieland, Munich (DE)

(73) Assignee: Open Invention Network, LLC,
Durham, NC (US)

(54) METHOD FOR CREATION OF DEVICE
DRIVERS AND DEVICE OBJECTS FOR
PERIPHERAL DEVICES

OTHER PUBLICATIONS

1112009 Frank et al.
4/2003 Boyle et aI 713/2
5/2003 Tabares et al. 709/321
7/2003 Duncan et al. 345/735

12/2003 Paul 709/321
1112004 Goodman 710/8

5/2005 Chrysanthakopoulos et aI.
1112005 Belvin et al. 719/328
8/2006 Amit et al.

10/2006 Yoshimura et al. 713/1
112008 Di Flora
2/2008 Suzuki et al. 710/302
7/2008 Bantz et al.
6/2009 Barreto et al.
2/2011 Stoyanov et al.

7,620,981 B2
2003/0070063 Al *
2003/0088711 Al *
2003/0132956 Al *
2003/0225928 Al *
2004/0230710 Al *
2005/0097573 Al
2005/0257226 Al *
2006/0183085 Al
2006/0230261 Al *
2008/0005403 Al
2008/0040526 Al *
2008/0168158 Al
2009/0150909 Al
201110035758 Al

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 98 days.

This patent is subject to a tennina1 dis­
claimer.

(*) Notice:

(21) Appl. No.: 12/711,462

(22) Filed: Feb. 24, 2010

Microsoft Corporation, "Device and Driver Installation Example",
Nov. 19,2009.
Microsoft Corporation, "Adding a PnP Device to a Running System",
Aug. 5, 2009.

References Cited

U.S. PATENT DOCUMENTS

Int. Cl.
G05F 3/00 (2006.01)
U.S. Cl.
USPC 710/8; 719/321
Field of Classification Search
USPC 710/8; 719/321
See application file for complete search history.

18 Claims, 6 Drawing Sheets

ABSTRACT(57)

(Continued)

All steps required to create and operate a peripheral device of
an electronic device can be perfonned without the need to
plug in the peripheral device to the electronic device. Setup
information for a peripheral device is extracted, modified and
stored to fit to a physical existent peripheral device. The
modified setup infonnation is used to create a data structure
that is passed to the peripheral bus driver. As the data structure
contains a hot plug notification the reception causes the
peripheral bus driver to initiate the setup process for the
peripheral device. As the data structure is built from setup
information that is available at the electronic device no addi­
tional user action is required. The invention also allows the
creation of a device object for existing signed driver packets
that may not be altered.

Primary Examiner - Elias Mamo
(74) Attorney, Agent, or Firm - Haynes and Boone, LLP

8/1994 Crick 713/1
8/1998 Leyda
6/2000 Garney 710/15

1112000 Mahalingam 710/104
7/2001 Chrabaszcz 710/302
2/2002 Lin et al.
6/2004 Wright et al.

12/2004 Kikuchi
1112005 Chrysanthakopoulos
9/2007 Ytterstrom
8/2009 Lin et al.
8/2009 Tabares et al.

5,339,432 A *
5,794,032 A
6,081,850 A *
6,148,355 A *
6,263,387 Bl *
6,345,319 B2
6,754,725 Bl
6,831,908 B2
6,968,307 Bl
7,275,118 B2
7,571,445 B2
7,574,713 B2

(56)

(58)

(52)

(51)

END

-504

BUS DRIVER

502 - t - 503 505

I tl.----------..
KERNEL MODE PNP MANAGER I USER MODE PNP MANAGER

_305
CREATE DATA STRUCTURE

PASS DATA STRUCTURE TO _ 306
PERIPHERAL BUS DRIVER

r-Q-U-E-R-Y-S-E-TU-P....%...IN-F-O-R-M-A=:n-=O-N-'- 301

.---__-..:!~__--, _ 302

EXTRACT SECTIONS 303
..-- ----L ~/.., ,...~o:::.__---,

REPLACE DEVICE IDENTIFICATION

Peretz, Ervin, "The Windows Driver Model Simplifies Management
of Device Driver 1/0 Requests", From the Jan. 1999 issue of

(56) References Cited

OTHER PUBLICATIONS

US 8,554,957 Bl
Page 2

Microsoft Systems Journal, http://www.microsoft.comlmsj/O 1991
windowsdriver/windowsdriver.aspx.
Microsoft Corporation, "Code Signing for Protected Media Compo­
nents in Windows Vista", Abstract, Aug. 25, 2006.

* cited by examiner

DEVICE

~
7J).
•
~
~

107
~

(-\1 DEVICE I
~

/' =~
PERIPHERAL BUS

INTERFACE
0
(')

:-+-
~CfO

N
0....

/
(.H

110
I

rFJ

=-('D
('D.....

PERIPHERAL DEVICE II I
....
0

INTERFACE 109
....
0\,

111

NON VOLATILE
MEMORY

SYSTEM BUS - 105

106
1- 101 /' iVOLATILE MEMORY i PROCESSING

UNITOPERATING -102
SYSTEM

100
/

APPLICATION 103
PROGRAMS -

PROGRAM
DATA -104

FIG.1

d
rJl

",010
tit
tit
"'~
\C
tit
......:J

="""'"

BUS DRIVER

FUNCTION DRIVER

PERIPHERAL DEVICE

~CfO

N
o....
(.H

o
(')...

~
7J).
•
~
~
~

~=~

rFJ

=­('D
('D.....
N
o....
0\

205
/

204

I

INF FILES
CATALOG FILES I 208

203
/

,/ KERNEL MODE
..

USER MODE
,..

NEW DEVICE
PnP MANAGER

....
PnP MANAGER DLL....

~

207
/

CFGMGRAPI ...
....

+
SETUP API

....

"
209

/
206

.. CO-INSTALLERS..
CLASS INSTALLERS

j I
BUS ",,201t

210

/

"202

FIG.2
d
rJl
QO

11.
tit
~

\c
tit
......:J

="""'"

LOAD DEVICE IDENTIFICATION

QUERY SETUP INFORMATION

EXTRACT SECTIONS

00

~301

302

303 304
/

~
7J).
•
~
~
~

~=~

o
(')...
~CfO

N
o....
(.H

~I STORE SETUPI REPLACE DEVICE IDENTIFICATION INFORMATION
j'

CREATE DATA STRUCTURE .----- 305

+
PASS DATA STRUCTURE TO 1 306
PERIPHERAL BUS DRIVER..

C END~

FIG.3

rFJ

=­('D
('D.....
(.H

o....
0\

d
rJl
QO

11.
tit
~

\c
tit
......:J

="""'"

401
.............

408
...............

FIG.4

• y • 400
SEND I/O REOUEST PACKET

RESPONDTO
I/O REOUEST

402

------HARDVVARE IDs
COMPATIBLE IDs

~405

~407

FILE

RANKED DRIVER LIST

~
7J).
•
~
~
~

~=~

o
(')...
~CfO

N
o....
(.H

rFJ

=­('D
('D.....
,j;o,.

o....
0\

d
rJl
QO

11.
tit
~

\c
tit
......:J

="""'"

~CfO

N
o....
(.H

~
7J).
•
~
~
~

~=~

o
(')

:-+-

rFJ

=­('D
('D.....
Ul
o....
0\

/IKERNEL MODE PNP MANAGER r-I USER MODE PNP MANAGER I
,

(BEGIN)

+ I

SETUP INFORMATION FILE r+ TEMPORARY STRUCTURE

HOT PLUG
NOTIFICATION -

501""'" ...

BUS DRIVER

502- • t-503 ~ r

FIG.5
d
rJl

",010
tit
tit
"'~
\C
tit
......:J

="""'"

o
(')...

rFJ

=­('D
('D.....
0\
o....
0\

~
7J).
•
~
~
~

~=~

~CfO

N
o....
(.H

d
rJl
QO

11.
tit
~

\c
tit
......:J

="""'"

605

""BUS DEVICES 10
BUS INSTANCE 10

BUS CONTAINER 10
__~I " I

HARDWARE 10
606 - I COMPATIBLE 10

604

"".... 603

606

""

1

DEVICE OBJECT I

• i1.. -----

- ""r-------t ----------.
••

.. PHYSICAL DEVICE
.",.,.. 600

"".... 60...

NON VOLATILE MEMORY ..602

" .. .L
HOT PLUG HARDWARE 10

NOTIFICATION COMPATIBLE 10

~ ..
BUS

DRIVER

FIG.6

US 8,554,957 B1
1

METHOD FOR CREATION OF DEVICE
DRIVERS AND DEVICE OBJECTS FOR

PERIPHERAL DEVICES

TECHNICAL FIELD OF THE INVENTION

The present invention relates to a method for connecting an
electronic device to a peripheral device generally and, more
particularly, to a method for creation and setup of a device
driver for peripheral devices that do not have a driver that
matches the device identifier of the peripheral device.

BACKGROUND OF THE INVENTION

A hardware abstraction layer (HAL), in modern operating
systems, is interposed between physical hardware and oper­
ating system (OS). The hardware abstraction layer (HAL) is
an abstraction layer, implemented in software, between the
physical hardware ofa computer and the software that runs on
that computer. Its function is to hide differences in hardware
from most ofthe operating system kernel, so that most of the
kernel-mode code does not need to be changed to run on
systems with different hardware. On a electronic device such
as a computer, HAL can basically be considered to be the
driver for the motherboard and allows instructions from
higher level computer languages to communicate with lower
level components, such as directly with hardware. Open
source operating systems, and some other portable operating
systems also have a HAL, even ifit' s not explicitly designated
as such. Some operating systems, such as Linux, have the
ability to insert one while running Popular expansion buses
which are used on more than one architecture are also
abstracted, such as ISA, EISA, PCI, PCI-E allowing, from the
as manufacturers point of view, drivers to also be highly
portable with a minimum of code modification. As the HAL
was introduced and is supplied by the manufacturer ofthe as
the as, thus its manufacturer gains extensive control of the
hardware. The as is only capable to identifY physical existent
hardware by specific information held ready and passed by
the hardware. A technique that allows to actively build all
required information for a peripheral device before it is con­
nected to the electronic device and even is able to morph the
physical existent peripheral device into a device desired by
the as is not currently known in the art. However, such
technique would offer significant advantages over the prior
art.

A device driver, in electronic data processing, is a com­
puterprogram that allows a higher-level computer program to
interact with a hardware device. A device driver typically
communicates with the device through the system bus or a
communications subsystem to which the hardware is con­
nected. When a calling program invokes a routine in the
driver, the driver issues commands to the device. Once the
device sends data back to the driver, the driver may invoke
routines in the original calling program. Seen from the as
manufacturers point of view, a device driver simplifies pro­
gramming by acting as an abstraction layer between a hard­
ware device and the application and as that uses it. The
higher-level application code can be written independently of
whatever specific hardware device it will ultimately control,
as it can interface with it in a standard way, regardless of the
underlying hardware. Every version of a device requires its
own hardware-specific specialized commands.

In contrast, most applications utilize devices by means of
simplified high-level device-generic commands. The device­
driver accepts these commands and breaks them into a series
of low-level device-specific commands as required by the

2
device being driven. By design device drivers are hardware­
dependent and operating-system-specific.

A virtual device driver as disclosed in U.S. Pat. No. 6,968,
307 is a particular variant of device drivers. Instead of
enabling the as to dialog with physical existent hardware, a
virtual device driver takes the opposite role and emulates a
piece ofhardware, so that the as and its application programs
have the illusion ofaccessing real hardware. Attempts by the
as or an application program to access the virtual hardware

10 may also be routed to physical existent hardware.
U.S. Pat. No. 7,571,445 describes a system and method for

dynamic device driver support in an open source operating
system. This technique introduces a device driver for a com­
puter system that includes an open source operating system,

15 including an open source kernel. The device driver is con­
structed from an open source service layer and a set of pre­
compiled driver modules that can be compiled against the
kernel of the operating system. A service layer provides an
interface between the kernel ofthe operating system and a set

20 of applicable driver modules. Although this method allows
the usage of one as service layer for multiple hardware
devices hardware specific device drivers for each peripheral
device are still needed. A solution for physical existent
devices that do not have a driver that matches the device

25 identifier of the device is not included.
U.S. Pat. No. 6,754,725 discloses an USB peripheral that

contains its own device driver. The invention concerns a
peripheral device comprising a computer readable media and
an interface circuit. The computer readable media may be

30 configured to store instructions for operating the peripheral
device. The interface circuit may be configured to communi­
cate the instructions to an operating system of a computer in
response to connection of the peripheral device to the com­
puter. Although this invention eliminates the need to install a

35 hardware specific device driver from separate media it
requires a computer readable media in the device itself there­
fore making it impossible to use the invention on devices that
do not provide such a capability. As the invention still requires
a hardware-specific device driver it does not give an accept-

40 able answer to the question how devices that have no such
driver can communicate with the computer.

In U.S. Pat. No. 5,794,032 a system for the identification
and configuration ofcomputer hardware peripherals is shown
that allows the automatic identification and configuration ofa

45 computer peripheral. The system uses an initialization pro­
gram to send one or more query instructions to a peripheral
device. In response to the query instructions, the peripheral
drive replies with data that can be used to uniquely identifY
the model number or type of the device. The system then

50 selects the appropriate software driver for the identified
peripheral device and loads the selected driver. This approach
also requires appropriate hardware specific drivers to be
installed on the computer before the peripheral device is
plugged in. As the HAL ofmodern operating systems permits

55 direct hardware access this technique is only applicable for
operating systems that do not have such intermediate layer.

U.S. Pat. No. 7,574,713 discloses methods, systems, and
computer program products for instantiating a device driver
for communication with a device by dynamically associating

60 the device driver at run-time with a device-specific and/or
service-specific software component. This may be done by
instantiating a device driver for communication with a device
by dynamically associating the device driver at run-time with
a device-specific software component. The software compo-

65 nent contains information that facilitates communication
with devices of a specific type. In other embodiments, a
device driver is instantiated by defining a plurality of device

US 8,554,957 B1
3 4

BRIEF DESCRIPTION OF THE FIGURES

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a block diagram of an exemplary operating envi­
ronment.

FIG. 2 is a block diagram showing involved components
when using the invention with Microsoft Windows Operating
Systems.

FIG. 3 is a flow chart illustrating a method of creating a
device driver and initializing the setup process in accordance
with the present invention.

FIG. 4 is a flow chart illustrating a method of ranking a
device driver by the Operating System during the setup pro­
cedure in a trusted system context without user interaction.

FIG. 5 is a flow chart illustrating a method of extracting
setup infonnations from a signed device driver and initializ­
ing the setup process for creation ofa device object in accor­
dance with the present invention.

FIG. 6 is a flow chart illustrating a method of binding a
physical device to a previously generated device object for a
signed driver in accordance with the present invention.

In order to avoid confusion often present in the world of
50 electronic devices jargon, for purposes of the present inven­

tion, the following term shall have the meaning set forth
below: "BUS" shall mean any device to which other physical,
logical, or virtual devices are attached; a bus includes tradi-
tional buses such as SCSI and PCI, as well as parallel ports,
serial ports, and i8042 ports.

The invention may be more vividly described with refer­
ence to FIGS. 1-3. FIG. 1 is a schematic diagram of a con­
ventional digital electronic device that can be used to imple­
ment various aspects ofthe invention. When a new peripheral

60 device 109 is connected to a peripheral device interface 110 or
a peripheral bus 108 that is connected to the system bus 105
by a peripheral bus interface 107, the electronic device 100
detects the presence ofthe connected peripheral device and a
configuration process (e.g., enumeration) begins. An enu-

65 meration process assigns a unique address to the connected
peripheral device, queries the connected peripheral device
about requirements and capabilities, writes data about the

create a data structure that is passed to the peripheral bus
driver. As signed device drivers must not be altered to keep
their functionality the invention also allows the creation of a
device object that in further steps is bound to the physical
existent peripheral device by changing its relations to the
peripheral bus. As the data structure contains a hot plug noti­
fication the reception causes the peripheral bus driver to ini­
tiate the setup process for the peripheral device. As the data
structure or the device object is built from setup infonnation
that is available at the electronic device no additional user
action is required. Ifused with a physical existent peripheral
device that has multiple functional capabilities the present
invention allows to transfer the features of other devices to
this device. Some major advantages of the invention are:

15 Devices that do not contain required electronic parts for suc­
cessful initialization of a setup process may be installed.
Compatible devices that do not have an own set of device
drivers may use setup data from existent devices. Devices that
are compatible but do not have signed drivers may be used in
an environment that obligatory requires signed drivers. A
device with multiple functional capabilities can lend device
information's from already installed devices. Non PUP
devices can behave like PnP devices as the initial creation
does not require the hardware to be connected.

SUMMARY OF THE INVENTION

parameters and associating one or more of the plurality of
device parameters with a service. The device parameters that
are associated with the service are then dynamically commu­
nicated to the device driver at run-time. Thus, a generic device
driver may be dynamically configured at run-time to commu­
nicate with devices of a particular device type and/or device
parameters may be associated with a service and communi­
cated to the device driver. These device parameters that are
associated with a particular service and then passed to the
device driver may allow the device driver to collect data from 10

a particular device that is relevant to a particular service
offering. Although this invention allows ultra flexible access
to and configuration of devices it requires the lower level
components to be recognized and accessible by the HAL
before the methods can come into operation.

u.s. Pat. No. 7,275,118 shows an input/output (I/O) device
driver loading method for a data processing system that
involves communication ofa secondary I/O device driver to a
data processing system using a primary I/O device driver. An
initial (first) device identification infonnation is passed from 20

the peripheral device to the data processing system. This first
device identification information corresponds to a first I/O
device driver in the data processing system. By utilizing the
invention the device then transmits a second I/O device driver
from the peripheral device to the data processing system 25

using the first I/O device driver in the data processing system.
A second device identification infonnation is then passed
from the peripheral device to the data processing system.
Although this method allows the use of simplified generic
device class drivers to establish an initial communication 30

with the data processing system to transmit additional device
drivers and device identification infonnation to the data pro­
cessing system it requires the device to be plugged into the
data processing system and a hardware specific device driver
to be available for the peripheral device. Also this method 35

does not give an acceptable answer to the question on how
devices can be installed and used that do not have a hardware
specific driver for any ofthe transmitted device identification
information.

u.s. Pat. No. 6,345,319 discloses a setting method for 40

installation of a plug and play device by utilizing the set-up
file (INF) of a hardware driver. The method reads the device
ID ofa new device and copies the driver file ofthe new device
to the corresponding directory. The device ID and all related
device class ofan already installed (original) device is deleted 45

from the computer's registry. After a restart of the computer
the os displays that a new device is found and automatically
establishes the relationship between the new device and the
previously installed driver through the new device ID and
class in order to let the new device be operated normally.

Although the invention describes a method to make
changes to an existing system configuration it requires an
already installed compatible device and a hardware-specific
device driver for the new device. In addition a restart of the
computer is mandatory. The required deletion of existing 55

registry entries most likely will be prohibited by the os or my
lead to serious corruption of the computers registry.

The present invention provides a way to perform all steps
required to build setup infonnation's, install and initialize a
peripheral device of an electronic device without the need to
plug in the peripheral device to the electronic device. Setup
information of a unsigned driver for a peripheral device is
extracted, modified and stored to fit to a physical existent
peripheral device. The modified setup information is used to

US 8,554,957 B1
5 6

structure to the peripheral bus driver 202 causes actions that
are similar to plug a peripheral device 200 into the peripheral
bus 20l.

If the data structure passed to the peripheral bus driver
contains a notification flag and the bus supports hot-plug
notification, the method may be applied while the system is
running Now the peripheral device is enumerated. The bus
driver 202, targeted by the data structure, receives the hot­
plug notification flag of the new device. The bus driver noti-

10 fies the kernel-mode PnP manager 203 that the list ofdevices
on the bus has changed. In this case, the change is a new
device on the bus. The kernel-mode PnP manager queries the
bus driver for a list ofdevices present on the bus by sending a

15 query for Bus Relations. The bus driver responds to the query
with a current list ofdevices on the bus. The kernel-mode PUP
manager compares the new list against the previous list and,
in this case, detennines that there is one new device on the
bus.

The kernel-mode PnP manager sends queries to the bus
driver to gather information about the new device, such as the
device's hardware IDs, compatible IDs, and device capabili­
ties. The kernel-mode PnP manager notifies the user-mode
PUP manager 204 that there is a device to be installed. The

25 user-mode PnP manager tries to perfonn a trusted installa­
tion. As the data structure passed to the peripheral bus driver
was generated from the setup information file and the setup
information file is stored at a location were the electronic
device expects the infonnation a server side installation can

30 be performed. The user-mode PnP manager creates a new
process using rund1l32.exe and launches newdev.d1l205 to
install the device.

The new device DLL calls setup API 206 device installa­
tion functions and CfgMgr API 207 PnP configuration man-

35 ager functions to carry out its installation tasks. The new
device DLL queries the system to build a list of possible
drivers for the device. As the setup information file stored in
the previous steps is available on the system and matches the
new device, the returned driver list contains the required

40 driver.
Setup uses the Class and ClassGUID entries in the device's

INF Version section to detennine the device setup class. The
setup class determines the class installer and the class co­
installers for the device, if any. Device-specific co-installers

45 are listed in the appropriate INF section. Setup transfers con­
trol to kernel mode to load drivers and start the device. Once
Setup has selected the driver for the device, copied the appro­
priate driver files, registered any device-specific co-installers,
and registered any device interfaces, it transfers control to

50 kernel mode to load the drivers and try to start the device. The
appropriate CfgMgr function sends a request to the user­
mode PnP manager, which passes it to the kernel-mode PUP
manager. The PUP manager loads the appropriate function
driver 210 and any optional filter driver 211 for the device.

The PnP manager calls the Driver Entry routine for any
required driver that is not yet loaded. The PnP manager then
calls the AddDevice routine for each driver, starting with
lowerfilter drivers, then the function driver, and, lastly, any
upper filter drivers. The PnP manager assigns resources to the

60 device, if required, and sends a start request to the device's
drivers.

After finishing these steps the physical existent peripheral
device may be plugged into the peripheral bus. As this device
sends a hot-plug notification and its device class and device id

65 fits to the driver installed by the data structure the electronic
device assumes that the peripheral device is plugged in and
starts it.

connected peripheral device to the as 102 of the electronic
device and loads the appropriate software device driver from
a non volatile memory into the as.

The device driver is a program that allows the as and
application programs 103 to communicate correctly with the
peripheral device, provides infonnation to the electronic
devices operating system about the peripheral device and
allows transfer of program data 104 to the peripheral device.

FIG. 3 is a flow chart illustrating a method of creating a
device driver and initializing the setup process in accordance
with the present invention. Initially the present invention
collects information's 301 about a desired device and creates
an appropriate setup infonnation file 304 for the device. This
may either be done by extracting installation infonnation
from an existing device or by utilizing a prebuilt setup infor­
mation file. Setup information is stored in a plain text file. The
plain text file is divided into sections that contain infonna­
tion's about the peripheral device's capabilities, dependen­
cies and requirements. During the setup process the as loads 20

the setup information file into volatile memory, identifies the
sections, reads the content of each section and writes entries
to the registry, the configuration database of the electronic
device. Instead ofmaking changes to the configuration data­
base ofthe electronic device the invention uses this method to
build a temporary data structure that is required to perform the
following steps. The temporary data structure may be held in
volatile memory such as a random access memory or be
stored to non volatile memory such as a physical storage
device. As the as searches and selects the appropriate setup
information file for a peripheral device by comparing the
class and the device id ofthe peripheral device with the class
and the device id stored in the setup information file changes
of the contents of the data structure are necessary to create a
setup infonnation file that fits to the peripheral device. The
device id of the extracted or prebuilt setup information file
stored in the temporary data structure is exchanged with the
device id 300 of the physical peripheral device that should
finally be plugged into the peripheral bus. This may either be
done by user input or by reading a plain text file which is
supplied with the peripheral device and just contains the
device id. The content ofthe modified data structure is used to
build the setup information file 304 for the new device. This
setup information file is stored to a location were the elec­
tronic device expects to find such information.

In the next step, the temporary data structure is used to
create a data structure 305 that is needed to initialize the setup
process for the new device without the need for the physical
device to be plugged into the peripheral bus or interface ofthe
electronic device. As the bus driver of a peripheral bus is
accessible and accepts configuration requests from either the
peripheral bus or the system bus the configuration request can
be fonned from the content of the temporary data structure.
The request can be built and sent by either an application upon 55

user request or a generic multi purpose device driver or ser­
vice that automatically starts when the creation ofthe tempo­
rary data structure is finished. The data structure sent to the
bus driver contains at least the request to add a new device, the
class and the device id both taken from the temporary data
structure. The class and the device id allow the proper selec­
tion ofthe setup information file built in the prior step. Recep­
tion of this data structure at the peripheral bus driver causes
the function driver for the bus device to determine that a new
device is on its bus. FIG. 2 is a block diagram showing
involved components when using the invention with
Microsoft Windows Operating Systems. Passing the data

US 8,554,957 B 1
7 8

Next a routine to add a device object is started. To build the
required parameters this routine uses the information col­
lected in the previous step. The routine is responsible for
creating the functional device object 210 or filter device
object 211 for the device. The routine contains a pointer to the
driver object structure which is the devices signed driver
object and a pointer to the physical device object created by
the lower level driver.

As simple reading from a file in the driver package does not
10 alter the package the required information to create the appro­

priate pointers for the routine to add the device 0 bject for the
expected device is read from the signed driver before the
routine is started. The routine contains a pointer to the signed
driver and a pointer to the newly arrived physical device

15 object created in the previous steps by the Plug and Play
manager.

This routine to add the device calls two other routines that
create the device object for use ofthe signed driver and attach
the device to the highest device object in the chain and return

20 a pointer to the previously highest device object. In addition
to a pointer to the driver object the first routine contains the
driver-determined number of bytes to be allocated for the
device extension of the device object, the device type, it's
characteristics, information about the devices exclusive

25 access properties and a pointer to a variable that receives a
pointer to the newly created device object structure. As all
information needed by this routine is taken from the signed
device driver installation package various device types can be
easyly installed, including but not limited to:

Battery devices and UPS devices, biometric-based per-
sonal identification devices and Bluetooth devices. CD-ROM
drives, including SCSI CD-ROM drives. In this case, the
Operating System's CD-ROM class installer also installs a
system-supplied CD audio driver and CD-ROM changer

35 driver, a Plug and Play filter driver. Disk Drives including
hard disk drives, display adapters, video adapters, display
drivers and video miniport drivers. Floppy disk Controllers
and floppy disk drive controllers.

Hard disk controllers, including ATAIATAPI controllers.
40 Human Interface Devices (HID) including interactive input

devices that are operated by the system-supplied HID class
driver, which includes USB devices that comply with the
USB HID Standard and non-USB devices that use a HID
minidriver. IEEE 1284.4 devices that control the operation of

45 multifunction IEEE 1284.4 peripheral devices. IEEE 1284.4
print functions on a Dot4 device that has a single child device,
which is a member of the printer device setup class. IEEE
1394 devices that support the 61883 protocol including the
61883.sys protocol driver that transmits various audio and

50 video data streams over the 1394 bus, including quality DY,
MPEG2, DSS, andAudio. IEEE 1394 devices that support the
AVC protocol device class. IEEE 1394 devices that support
the SBP2 protocol device class. IEEE 1394 host controllers
connected on a PCI bus. Imaging devices including still-

55 image capture devices, digital cameras, and scanners. IrDA
devices including serial-IR and fast-IR NDIS miniports. Key­
boards also specified in the (secondary) INF for an ennmer­
ated child HID keyboard device. Media changers including
SCSI media changer devices. Memory technology drivers

60 including memory devices, such as flash memory cards.
Modems and display monitors. An setup information file for
a device of this class installs no device driver, but rather
specifies the features ofa particularmonitor to be stored in the
registry for use by drivers of video adapters. Mouse devices

65 and other kinds of pointing devices, such as trackballs also
specified in the (secondary) INF for an ennmerated child HID
mouse device. Multifunction Devices including combo cards,

As the previously described steps of the present invention
alter parts ofthe initial existent driver package for installation
of signed drivers a different approach is needed. If the Oper­
ating system detects that at least one file in the signed driver
package has been altered since the package was signed it
categorizes the drivers as altered. This makes it impossible to
perform the desired device installation that can be handled
entirely by the Operating System's user-mode and kernel­
mode PnP manager components. In such case, for non-ad­
ministrative and standard users, the Operating System does
not prompt the user. It would only automatically install a
driver signed by a signing authority but silently refuses to
install the altered driver. In some operating systems, in order
for a user to access specific content such as HD DVD and
other licensed formats, all kernel-mode components on his
system must be signed. That means that, if the user tries to
install the altered driver, the system is not allowed to play the
licensed content.

FIG. 4 is a flow chart illustrating a method of ranking a
device driver by the Operating System during the setup pro­
cedure in a trusted system context without user interaction.
Initially, the Kernel Mode Plug and Play Manager sends an
I/O Request Packet 400 to the Bus Driver. The Bus driver
responds 401 to the request by sending in the Hardware and
Compatible IDs 402. Based on this information the setup
process queries 403 the Operating Systems driver store or a
location where the Operating System expects drivers, such as
an INF directory, for matching drivers. If Matching drivers
are found 404 they are added to a driver list 405. If the setup
process cannot find a matching driver it exits unattended 30

setup mode 406. If drivers are found the setup process com­
pares the content of the setup information files 407 to the
device identification strings received in step 404 and builds a
driver list with rank indicators 408.

As described in the previous steps the Operating System
does not directly interact with hardware. Instead, every piece
ofhardware is represented by a device object that receives all
In- and Output from the Operating System. To successfully
use the invention with signed drivers a device object for the
device expected by the unmodified signed driver in the Oper­
ating System has to be created and, in later steps, bound to the
physical existent device that is not attached to the electronic
device when the required device object is created.

To successfully collect all necessary data for creating the
new device object the setup information file sections of the
signed driver and its content are read 500 into a temporary
data structure. As already described the creation ofthe device
object is initialized by sending 501 a hot plug notification to
the bus driver. The reception ofthe notification causes the bus
driver to notify 502 the Kernel Plug and Play Manager that the
list of devices on the bus has changed.

The Kernel Plug and Play Manager sends 503 I/O Request
Packets (IRP) to the bus driver to gather informations about
the new device. As the bus driver is able to receive commands
and data input from the Operating System or an application
program and there is no physical device attached to the bus at
this point the Plug and Play managers IRP's are anserwed by
sending 504 the previously collected data from the signed
device driver in form of strings to the Plug and Play manager
via the bus driver that adds, due to the reception ofthe hot plug
notification, some of the required informations like the bus
devices ID, bus instance ID or bus container ID. Hardware
specific information like the devices hardware ID or its com­
patible ID are taken from the setup information file. The
Kernel Mode Plug and Play manager then notifies 505 the
User Mode Plug and Play manager that there is a new device
to be installed.

US 8,554,957 B1
9 10

patible ID 606 can be queried, transmitted to and stored in the
physical devices non volatile memory. The next time the
peripheral device is plugged into the peripheral bus the
devices notifications fit to the previously installed Operation
System's device object. As the device is already installed it
can be used without any further installation steps or user
interaction, it just appears as switched ON. The Operating
System perfonns all I/O requests to the Operation Systems
device object which is now bound to the physical device.

Although the invention has been described in relation to
preferred embodiments, many variations, equivalents, modi­
fications and other uses will become apparent to those skilled
in the art. The scope of the present invention should not be
limited to the specific disclosure but detennined only by the

15 appended claims.
What is claimed is:
1. A method for creation of setup infonnation, and the

initialization and performance of an installation of a periph­
eral device of an electronic device, the method comprising:

storing a device identification (ID) ofthe peripheral device;
extracting data and creating a data structure from existent

setup information;
comparing the device ID of the peripheral device to a

device ID stored in the data structure;
detennining whether any changes to the device ID of the

peripheral device are necessary based on identified dif­
ferences between the device ID ofthe peripheral device
as compared to the device ID stored in the data structure;

replacing the device ID in the data structure with the device
ID of the peripheral device;

creating and storing a setup information file from content
of the data structure;

creating and passing a request to a device driver of an
interface ofthe peripheral device and a bus that initiates
the installation of the peripheral device, wherein the
peripheral device is not connected to the electronic
device, and wherein the request comprises a request to
add the peripheral device, the class identifier of the
peripheral device and the device ID of the peripheral
device which cause a bus driver ofthe bus to receive the
request and detennine a new device is operating on the
bus as Plug and Play device; and

adding entries to provide Plug and Play functionality to the
data structure generated from an existent setup infonna­
tion file that does not provide such fnnctionality.

2. The method of claim 1, wherein a previously existent
setup infonnation is stored in a file.

3. The method ofclaim 1, wherein existent setup infonna­
tion is stored in a configuration memory of the electronic

50 device.
4. The method of claim 1, further comprising:
passing an instance ID to the driver of the peripheral inter­

face or bus to identifY an instance of the peripheral
device.

5. The method according to claim 1, wherein the bus is an
expansion bus.

6. The method according to claim 1, wherein the bus is a
peripheral bus.

7. The method of claim 1, wherein the peripheral device
60 supports the functionality of multiple devices and the opera­

tions of creation of setup infonnation, initialization and per­
formance ofan installation are perfonned for each supported
functionality of the multiple devices.

8. An apparatus configured to create setup information, and
65 perfonn the initialization and perfonnance of an installation

of a peripheral device of the apparatus, the apparatus com­
prising:

such as a PCMCIA modem and netcard adapter. The driver
for such a Plug and Play multifunction device is installed
under this class and enumerates the modem and netcard sepa­
rately as its child devices. Multimedia devices including
Audio and DVD multimedia devices,joystick ports, and full­
motion video capture devices. Multiport serial adapters
including intelligent multiport serial cards. Network adapters
including NDIS NIC miniport drivers. Network clients
including network and/or print providers. Network services
such as redirectors and servers. Network transports including 10

NDIS protocols, CoNDIS stand-alone call managers, and
CoNDIS clients, as well as higher level drivers in transport
stacks. PCI SSL accelerator devices that accelerate secure
socket layer (SSL) cryptographic processing. PCMCIA
adapters including CardBus host controllers. Ports (COM &
LPT ports) including serial and parallel port devices. Printers
and bus-specific class drivers including SCSI/1394-enumer­
ated printers. Processors, SCSI and RAID controllers includ­
ing SCSI HBAs (Host Bus Adapters) and disk-array control­
lers. Smart Card readers and storage volumes including 20

storage volumes as defined by the system-supplied logical
volume manager and class drivers that create device objects to
represent storage volumes, such as the system disk class
driver. System Devices, including HALs, system buses, sys­
tem bridges, the system ACPI driver, and the system volume 25

manager driver. Tape drives, including all tape miniclass driv­
ers. USB host controllers and USB hubs. Windows CE USB
ActiveSync devices that support communication between a
personal computer and a device that is compatible with the
Windows CE ActiveSync driver (generally, PocketPC 30

devices) over USB.
The second routine attaches the device to the highest

device object in the chain (if any) and returns a pointer to the
previously highest device object. the routine contains a
pointer to the previously created device object and a pointer to 35

another driver's device object, such as a pointer returned by a
preceding call to a routine that returns a pointer to the top
object in the named device object's stack.

Due to the fact, that the physical device identification
expected by the signed driver is read from the driver and sent 40

to the User Mode Plug and Play Manager a trusted ("server
side") silent installation can be perfonned.

Initially the device object is installed but due to the fact that
there is no device plugged into the bus, not started. As the
physical existent peripheral device that was used with 45

unsigned drivers, when plugged into the bus, does not send a
hotplug notification or other notifications that would initialize
an enumeration process additional steps are required to bind
the physical device to the device 0 bject created in the previous
steps in case a signed driver should or has to be used.

To allow binding of a physical device that has no signed
drivers but should be used with such drivers the hardware
device 600 has to have non volatile memory 601 that provides
read- and writeable access to an application program. To
allow access and configuration, initially the non volatile 55

memory of the device is programmed to send out a hot plug
notification 602 and identification infonnations 603 for a
simple generic device. Non signed drivers for such devices
are available and may be silently installed on most common
electronic devices. To bind this physical device to the existing
but inactive Operating Systems device object 604 for the
signed driver package the bus specific infonnations bus
devices ID, bus instance ID and bus container ID 605 for the
device object are queried by sending I/O Request Packets to
the bus driver 606. Due to the fact that the Operating Systems
device object is already installed but not active the Bus rela­
tions for this device are known and its Hardware and Com-

US 8,554,957 B1
11

a memory configured to store a device identification (ID) of
the peripheral device; and

a processor configured to
extract data and create a data structure from existent

setup information,
compare the device ID of the peripheral device to a

device ID stored in the data structure
determine whether any changes to the device ID of the

peripheral device are necessary based on identified
differences between the device ID of the peripheral 10

device as compared to the device ID stored in the data
structure,

replace the device ID in the data structure with the device
ID of the peripheral device,

create and store a setup information file from content of 15

the data structure, and
create and pass a request to a device driver ofan interface

of the peripheral device and a bus that initiates the
installation of the peripheral device, wherein the
peripheral device is not connected to the apparatus, 20

and wherein the request comprises a request to add the
peripheral device, the class identifier ofthe peripheral
device and the device ID of the peripheral device
which cause a bus driver of the bus to receive the
request and determine a new device is operating on 25

the bus as Plug and Play device, wherein the processor
is further configured to add entries to provide Plug and
Play functionality to the data structure generated from
an existent setup information file that does not provide
such fnnctionality. 30

9. The apparatus of claim 8, wherein a previously existent
setup information is stored in a file.

I? T~e appar~tus ofclaim 8, wherein existent setup infor­
mation IS stored m a configuration memory of the apparatus.

11. The apparatus of claim 8, wherein the processor is 35

further configured to pass an instance ID to the driver of the
peripheral interface or bus to identify an instance of the
peripheral device.

12. The apparatus of claim 8, wherein the bus is an expan-
sion bus. 40

13. The apparatus of claim 8, wherein the bus is a periph­
eral bus.

14. The apparatus ofclaim 8, wherein the peripheral device
s.upports the ~nctionality ofmultiple devices and the opera­
tions of creatIOn of setup information, initialization and per- 45

form~ce ?fan installation are performed for each supported
fnnctlOnahty of the multiple devices.
. 15. A non-transitory computer readable medium compris­
mg a computer program that when executed causes a proces-

12
~or ~o perform creation of setup information, and the initial­
Izat~on and performance of an installation of a peripheral
devIce of an electronic device, the processor further being
configured to perform:

storing a device identification (ID) ofthe peripheral device'
extracting data and creating a data structure from existen~

setup information;
comparing the device ID of the peripheral device to a

device ID stored in the data structure'
determining whether any changes to th~ device ID of the

peripheral device are necessary based on identified dif­
ferences between the device ID ofthe peripheral device
as compared to the device ID stored in the data structure'

replacing a device ID in the data structure with the devic~
ID of the peripheral device;

creating and storing a setup information file from content
of the data structure;

creating and passing a request to at least one of a device
driver of an interface of the peripheral device and a bus
that i~itiates the installation of the peripheral device,
wherem the peripheral device is not connected to the
electronic device, and wherein the request comprises a
request to add the peripheral device, the class identifier
of the peripheral device and the device ID of the periph­
eral device which cause a bus driver ofthe bus to receive
the request and determine a new device is operating on
the bus as Plug and Play device, wherein the processor is
further configured to add entries to provide Plug and
Play functionality to the data structure generated from
an existent setup information file that does not provide
such functionality.

16. The method of claim 1, further comprising:
creating a device object of the electronic device and bind­

ing the device object to the peripheral device to provide
a signed driver that is used during the installation ofthe
peripheral device.

17. The apparatus of claim 8, wherein the processor is
further configured to

create a device object ofthe apparatus and bind the device
object to the peripheral device to provide a signed driver
that is used during the installation of the peripheral
device.

18. The non-transitory computer readable medium ofclaim
15, wherein the processor is further configured to perform:

creating a device object of the electronic device and bind­
ing the device object to the peripheral device to provide
a signed driver that is used during the installation ofthe
peripheral device.

* * * * *

