
111
USOI0445258Bl

(12) United States Patent
Wieland

(10) Patent No.: US 10,445,258 Bl
(45) Date of Patent: *Oct. 15,2019

(58) Field of Classification Search
None
See application file for complete search history.

U.S. PATENT DOCUMENTS

(54) METHOD FOR CREATION OF DEVICE
DRIVERS AND DEVICE OBJECTS FOR
PERIPHERAL DEVICES

(71) Applicant: OPEN INVENTION NETWORK
LLC, Durham, NC (US)

(72) Inventor: Martin Wieland, Munich (DE)

(73) Assignee: OPEN INVENTION NETWORK
LLC, Durham, NC (US)

(52) U.S. Cl.
CPC

(56)

G06F 13/102 (2013.01); G06F 9/4411
(2013.01); G06F 9/44505 (2013.01); G06F

13/36 (2013.01)

References Cited

(21) Appl. No.: 15/943,912

OTHER PUBLICATIONS

(Continued)

Primary Examiner - Elias Mamo

8/1994 Crick
8/1998 Leyda

(Continued)

5,339,432 A
5,794,032 A

Microsoft Corporation, "Adding a PnP Device to a Running Sys
tem", Aug. 5, 2009.

Apr. 3, 2018

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 28 days.

This patent is subject to a tenninal dis
claimer.

(*) Notice:

(22) Filed:

Related U.S. Application Data

Continuation of application No. 15/338,866, filed on
Oct. 31, 2016, now Pat. No. 9,934,049, which is a
continuation of application No. 141755,641, filed on
Jun. 30, 2015, now Pat. No. 9,483,421, which is a
continuation of application No. 14/471,223, filed on
Aug. 28, 2014, now Pat. No. 9,122,623, which is a
continuation of application No. 14/044,086, filed on
Oct. 2, 2013, now Pat. No. 8,825,911, which is a
continuation of application No. 121711,462, filed on
Feb. 24, 2010, now Pat. No. 8,554,957.

20 Claims, 6 Drawing Sheets

All steps required to create and operate a peripheral device
ofan electronic device can be perfonned without the need to
plug in the peripheral device to the electronic device. Setup
information for a peripheral device is extracted, modified
and stored to fit to a physical existent peripheral device. The
modified setup infonnation is used to create a data structure
that is passed to the peripheral bus driver. As the data
structure contains a hot plug notification the reception
causes the peripheral bus driver to initiate the setup process
for the peripheral device. As the data structure is built from
setup information that is available at the electronic device no
additional user action is required. The invention also allows
the creation of a device object for existing signed driver
packets that may not be altered.

(63)

(51) Int. Cl.
G06F 13/10
G06F 9/445
G06F 13/36
G06F 9/4401

(2006.01)
(2018.01)
(2006.01)
(2018.01)

(57) ABSTRACT

BEGIN

-504

BUS DRIVER

502- t-503 5rIKERNEL MODE PNP MANAGER r" ,-----------,

406
,/

406

I 407...-..DRIVER LIST

RESPONDTQ
1/0 REQUEST

I-IARD\NARE IDs
COMPATIBLE IDs

~ --3!: ------..--- 400

SEND I/O REOUEST PACKET

SETUP INFORMATION FILE

'-;:::=::::::;::::::::::::::::~c===----,_ 403

408
-- RANKED DRIVER LIST

US 10,445,258 Bl
Page 2

u.s. PATENT DOCUMENTS

5/2003 Tabares et al.
7/2003 Duncan G06F 9/4411

715/735

6/2000 Garney G06F 9/4415
710/15

11/2000 Mahalingam
4/2001 Chrabaszcz H04L 29/06

709/220

G06F 9/4411
713/1

2004/0230710 Al 1112004 Goodman
2005/0097573 Al 5/2005 Chrysanthakopoulos et al.
2005/0257226 Al * 11/2005 Belvin G06F 9/4413

719/328
2006/0183085 Al 8/2006 Amit et al.
2006/0230261 Al 10/2006 Yoshimura et al.
2007/0168414 Al 7/2007 Arnold et al.
2007/0263236 Al * 1112007 Selvaraj G06F 3/1204

358/1.9
2008/0005403 Al 1/2008 Di Flora
2008/0040526 Al 2/2008 Suzuki et al.
2008/0168158 Al 7/2008 Bantz et al.
2009/0150909 Al 6/2009 Barreto et al.
201110035758 Al 2/2011 Stoyanov et al.

OTHER PUBLICATIONS

Microsoft Corporation, "Code Signing for Protected Media Com
ponents in Windows Vista", Abstract, Aug. 25, 2006.
Microsoft Corporation, "Device and Driver Installation Example",
Nov. 19, 2009.
Peretz, Ervin, "The Windows Driver Model Simplifies Management
of Device Driver I/O Requests", From the Jan. 1999 issue of
Microsoft Systems Journal, http://www.microsoft.com/msj/O 199/
windowsdriver/windowsdrive.aspx.

* cited by examiner

2004/0225875 Al * 1112004 Huang

Chrabaszcz
Lin et al.
Wright et al.
Kikuchi
Chrysanthakopoulos
Ytterstrom
Lin et al.
Tabares et al.
Frank et al.
Hobbs et al.
McCorkendale

4/2003 Boyle

..... G06F 13/102
710/104

9/2013 Jiang G06F 13/102
710/16

..................... H04L 29/06
713/2

7/2001
2/2002
6/2004

12/2004
1112005
9/2007
8/2009
8/2009

1112009
9/2011

10/2012

12/2003 Paul

References Cited

8,527,670 B2 *

6,148,355 A
6,212,585 Bl *

6,081,850 A *

6,263,387 Bl
6,345,319 B2
6,754,725 Bl
6,831,908 B2
6,968,307 Bl
7,275,118 B2
7,571,445 B2
7,574,713 B2
7,620,981 B2
8,028,040 Bl
8,281,058 Bl *

2003/0225928 Al

2003/0070063 Al *

2003/0088711 Al
2003/0132956 Al *

(56)

DEVICE

e
•
7J).
•
~
~
~

107
~

(-\1 DEVICE I
=/' ~

PERIPHERAL BUS
INTERFACE 0

(')

:-+-....
~Ul

N
0....

I
\0

110 rFJ

I =-('D
('D.....

PERIPHERAL DEVICE II I
....
0

INTERFACE 109
....
0\

\
111

NON VOLATILE
MEMORY

SYSTEM BUS - 105

106
1- 101 /' IVOLATILE MEMORY i PROCESSING

UNITOPERATING _ 102
SYSTEM

100
/

APPLICATION 103
PROGRAMS -

PROGRAM
DATA -104

FIG.l

d
rJl

"""'"=
~
~
tit
N
tit
QO

="""'"

FUNCTION DRIVER

PERIPHERAL DEVICE

BUS DRIVER
rFJ

=('D
('D.....
N

o....
0\

o
(')

:-+-....
~Ul

N
o....
\0

d
rJl

"""'"=
~
~
tit
N
tit
QO

="""'"

e
•
7J).
•
~

205 ~204 ~

~

/ / =~

INF FILES
CATALOG FILES I 208

203
/

"" KERNEL MODE
..

USER MODE
..

NEW DEVICE
PnP MANAGER

...
PnP MANAGER DLL'"

11

207
/

CFGMGRAPI ...

~
SETUP API

~

"
209

/
206

'" CO-INSTALLERS
CLASS INSTALLERS

I I
BUS ,.,201-.

210

/

"202

FILTER DRIVER

FIG.2

300

/
LOAD DEVICE IDENTIFICATION

, .:r:: i~301

QUERY SETUP INFORMATION

x ~302

I EXTRACT SECTIONS I 303 /" 304

/'
• ~ STORE SETUPI REPLACE DEVICE IDENTIFICATION INFORMATION

'+
CREATE DATA STRUCTURE I~ 305

PASS DATA STRUCTURE TO I~ 306
PERIPHERAL BUS DRIVER

FIG.3

e
•
7J).
•
~
~
~

~=~

o
(')

:-+-....
~Ul

N
o....
\0

rFJ

=('D
('D.....
(.H

o....
0\

d
rJl

"""'"=
~
~
tit
N
tit
QO

="""'"

u.s. Patent Oct. 15, 2019 Sheet 4 of 6 US 10,445,258 Bl

0 tv)
0 0
'\t '\t

\ \
<0
0 l-v -I- \ X

W W
~ W
u a: 10 ,....

~
N g o 0
0 '\t v

I- '\t fJJ \ \
W

\ .J
fJJ a: Ll. I-W W fJJJ > Z -
d - 0 .J

a.: I-W Ul Ul 0 - a:
II 01- oQ fJJ

~ W-
0 I-(J) - >- .J >

WW II ~ -
::::: OW II a:

ZJ
a.:..J W W a: 00 Od <~ J > 0

Z S~ d - Ll. 0
W Q.W a: Z W
(f) (f)et 00.: 0 - ~

wO et~ Q. Za:::::: <0 J <t:
IU I- et

W

/
(J)

/ '\t
c- .
0 CO C)
V 0 -

V Ll.

e
•
7J).
•
~
~
~

~=~

rFJ

=('D
('D.....
Ul

o....
0\

o
(')

:-+-....
~Ul

N
o....
\0

d
rJl

"""'"=
~
~
tit
N
tit
QO

="""'"

/IKERNEl MODE PNP MANAGER ~ I USER MODE PNP MANAGER
,

(BEGIN
.,
J..

I

SETUP INFORMATION FILE ~ TEMPORARY STRUCTURE

HOT PLUG
NOTIFICATION -

501"" ..

BUS DRIVER

502- • t-503 .. ,
- •

FIG.5

e
•
7J).
•

1

~603

606
/'

....
~Ul

N
o....
\0

~
~
~

~=~

rFJ

=('D
('D.....
0\

o....
0\

o
(')

:-+-

605
/'

604

DEVICE OBJECT
r-------t------~-,••

.... PHYSICAL DEVICE
,..,.",600

~60...

NON VOLATILE MEMORY ..602

" .. J,

HOT PLUG HARDWARE 10
NOTIFICATION COMPATIBLE ID

+ +
BUS

DRIVER

FIG.6

.-.- ... _-------
BUS DEVICES 10

BUS INSTANCE 10
BUS CONTAINER ID____I~----.ll......-...il......--I

HARDWARE 10
606- I COMPATIBLE 10

d
rJl

"""'"=
~
~
tit
N
tit
QO

="""'"

US 10,445,258 Bl
1

METHOD FOR CREATION OF DEVICE
DRIVERS AND DEVICE OBJECTS FOR

PERIPHERAL DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
15/338,866, entitled "METHOD FOR CREATION OF
DEVICE DRIVERS AND DEVICE OBJECTS FOR
PERIPHERAL DEVICES", filed on Oct. 31, 2016, now
issued U.S. Pat. No. 9,934,049 issued on Apr. 3, 2018, which
is a continuation of application Ser. No. 14/755,641, entitled
"METHOD FOR CREATION OF DEVICE DRIVERS
AND DEVICE OBJECTS FOR PERIPHERAL DEVICES",
filed on Jun. 30, 2015, now issued U.S. Pat. No. 9,483,421
issued on Nov. 1,2016, which is a continuation of applica
tion Ser. No. 14/471,223, entitled "METHOD FOR CRE
ATION OF DEVICE DRIVERS AND DEVICE OBJECTS
FOR PERIPHERAL DEVICES", filed on Aug. 28, 2014,
now issued U.S. Pat. No. 9,122,623, issued on Sep. 1,2015,
which is a continuation of application Ser. No. 14/044,086,
entitled "METHOD FOR CREATION OF DEVICE DRIV
ERS AND DEVICE OBJECTS FOR PERIPHERAL
DEVICES", filed on Oct. 2, 2013, now issued U.S. Pat. No.
8,825,911, issued on Sep. 2, 2014, which is a continuation
of application Ser. No. 12/711,462, entitled "METHOD
FOR CREATION OF DEVICE DRIVERS AND DEVICE
OBJECTS FOR PERIPHERAL DEVICES", filed on Feb.
24,2010, now issued U.S. Pat. No. 8,554,957, issued on Oct.
8, 2013, the entire contents of each are hereby incorporated
by reference in their entirety.

TECHNICAL FIELD OF THE INVENTION

The present invention relates to a method for connecting
an electronic device to a peripheral device generally and,
more particularly, to a method for creation and setup of a
device driver for peripheral devices that do not have a driver
that matches the device identifier of the peripheral device.

BACKGROUND OF THE INVENTION

A hardware abstraction layer (HAL), in modem operating
systems, is interposed between physical hardware and oper
ating system (OS). The hardware abstraction layer (HAL) is
an abstraction layer, implemented in software, between the
physical hardware of a computer and the software that runs
on that computer. Its function is to hide differences in
hardware from most of the operating system kernel, so that
most of the kernel-mode code does not need to be changed
to run on systems with different hardware. On a electronic
device such as a computer, HAL can basically be considered
to be the driver for the motherboard and allows instructions
from higher level computer languages to communicate with
lower level components, such as directly with hardware.
Open source operating systems, and some other portable
operating systems also have a HAL, even if it's not explic
itly designated as such. Some operating systems, such as
Linux, have the ability to insert one while running. Popular
expansion buses which are used on more than one architec
ture are also abstracted, such as ISA, EISA, PCI, PCI-E
allowing, from the OS manufacturers point of view, drivers
to also be highly portable with a minimum of code modi
fication. As the HAL was introduced and is supplied by the
manufacturer of the OS the OS, thus its manufacturer gains
extensive control of the hardware. The OS is only capable to

2
identify physical existent hardware by specific information
held ready and passed by the hardware. A technique that
allows to actively build all required information for a
peripheral device before it is connected to the electronic

5 device and even is able to morph the physical existent
peripheral device into a device desired by the OS is not
currently known in the art. However, such technique would
offer significant advantages over the prior art.

A device driver, in electronic data processing, is a com-
10 puter program that allows a higher-level computer program

to interact with a hardware device. A device driver typically
communicates with the device through the system bus or a
communications subsystem to which the hardware is con
nected. When a calling program invokes a routine in the

15 driver, the driver issues commands to the device. Once the
device sends data back to the driver, the driver may invoke
routines in the original calling program. Seen from the OS
manufacturers point of view, a device driver simplifies
programming by acting as an abstraction layer between a

20 hardware device and the application and OS that uses it. The
higher-level application code can be written independently
of whatever specific hardware device it will ultimately
control, as it can interface with it in a standard way,
regardless of the underlying hardware. Every version of a

25 device requires its own hardware-specific specialized com
mands.

In contrast, most applications utilize devices by means of
simplified high-level device-generic commands. The device
driver accepts these commands and breaks them into a series

30 of low-level device-specific commands as required by the
device being driven. By design device drivers are hardware
dependent and operating-system-specific.

A virtual device driver as disclosed in U.S. Pat. No.
6,968,307 is a particular variant of device drivers. Instead of

35 enabling the OS to dialog with physical existent hardware,
a virtual device driver takes the opposite role and emulates
a piece of hardware, so that the OS and its application
programs have the illusion of accessing real hardware.
Attempts by the OS or an application program to access the

40 virtual hardware may also be routed to physical existent
hardware.

U.S. Pat. No. 7,571,445 describes a system and method
for dynamic device driver support in an open source oper
ating system. This technique introduces a device driver for

45 a computer system that includes an open source operating
system, including an open source kernel. The device driver
is constructed from an open source service layer and a set of
precompiled driver modules that can be compiled against the
kernel of the operating system. A service layer provides an

50 interface between the kernel of the operating system and a
set of applicable driver modules. Although this method
allows the usage of one OS service layer for multiple
hardware devices hardware specific device drivers for each
peripheral device are still needed. A solution for physical

55 existent devices that do not have a driver that matches the
device identifier of the device is not included.

U.S. Pat. No. 6,754,725 discloses an USB peripheral that
contains its own device driver. The invention concerns a
peripheral device comprising a computer readable media

60 and an interface circuit. The computer readable media may
be configured to store instructions for operating the periph
eral device. The interface circuit may be configured to
communicate the instructions to an operating system of a
computer in response to connection of the peripheral device

65 to the computer. Although this invention eliminates the need
to install a hardware specific device driver from separate
media it requires a computer readable media in the device

US 10,445,258 Bl
3 4

SUMMARY OF THE INVENTION

BRIEF DESCRIPTION OF THE FIGURES

The present invention provides a way to perfonn all steps
required to build setup information's, install and initialize a
peripheral device of an electronic device without the need to
plug in the peripheral device to the electronic device. Setup
information of a unsigned driver for a peripheral device is
extracted, modified and stored to fit to a physical existent
peripheral device. The modified setup infonnation is used to
create a data structure that is passed to the peripheral bus
driver. As signed device drivers must not be altered to keep
their functionality the invention also allows the creation of
a device object that in further steps is bound to the physical
existent peripheral device by changing its relations to the
peripheral bus. As the data structure contains a hot plug
notification the reception causes the peripheral bus driver to
initiate the setup process for the peripheral device. As the
data structure or the device object is built from setup
information that is available at the electronic device no
additional user action is required. If used with a physical
existent peripheral device that has multiple functional capa
bilities the present invention allows to transfer the features
of other devices to this device. Some major advantages of
the invention are: Devices that do not contain required
electronic parts for successful initialization of a setup pro
cess may be installed. Compatible devices that do not have
an own set of device drivers may use setup data from
existent devices. Devices that are compatible but do not have
signed drivers may be used in an environment that obliga
tory requires signed drivers. A device with multiple func
tional capabilities can lend device infonnation's from
already installed devices. Non PUP devices can behave like
PUP devices as the initial creation does not require the
hardware to be connected.

FIG. 1 is a block diagram of an exemplary operating
environment.

requires the device to be plugged into the data processing
system and a hardware specific device driver to be available
for the peripheral device. Also this method does not give an
acceptable answer to the question on how devices can be
installed and used that do not have a hardware specific driver
for any of the transmitted device identification information.

u.s. Pat. No. 6,345,319 discloses a setting method for
installation of a plug and play device by utilizing the set-up
file (INF) of a hardware driver. The method reads the device

10 ID of a new device and copies the driver file of the new
device to the corresponding directory. The device ID and all
related device class of an already installed (original) device
is deleted from the computer's registry. After a restart of the

15 computer the os displays that a new device is found and
automatically establishes the relationship between the new
device and the previously installed driver through the new
device ID and class in order to let the new device be operated
normally.

Although the invention describes a method to make
changes to an existing system configuration it requires an
already installed compatible device and a hardware-spe
cific device driver for the new device. In addition a restart
of the computer is mandatory. The required deletion of

25 existing registry entries most likely will be prohibited by the
os or my lead to serious corruption of the computers
registry.

itself therefore making it impossible to use the invention on
devices that do not provide such a capability. As the inven
tion still requires a hardware-specific device driver it does
not give an acceptable answer to the question how devices
that have no such driver can communicate with the com
puter.

In U.S. Pat. No. 5,794,032 a system for the identification
and configuration of computer hardware peripherals is
shown that allows the automatic identification and configu
ration of a computer peripheral. The system uses an initial
ization program to send one or more query instructions to a
peripheral device. In response to the query instructions, the
peripheral drive replies with data that can be used to
uniquely identify the model number or type of the device.
The system then selects the appropriate software driver for
the identified peripheral device and loads the selected driver.
This approach also requires appropriate hardware specific
drivers to be installed on the computer before the peripheral
device is plugged in. As the HAL of modem operating
systems permits direct hardware access this technique is 20

only applicable for operating systems that do not have such
intermediate layer.

u.s. Pat. No. 7,574,713 discloses methods, systems, and
computer program products for instantiating a device driver
for communication with a device by dynamically associating
the device driver at run-time with a device-specific and/or
service-specific software component. This may be done by
instantiating a device driver for communication with a
device by dynamically associating the device driver at
run-time with a device-specific software component. The 30

software component contains information that facilitates
communication with devices of a specific type. In other
embodiments, a device driver is instantiated by defining a
plurality of device parameters and associating one or more
of the plurality of device parameters with a service. The 35

device parameters that are associated with the service are
then dynamically communicated to the device driver at
run-time. Thus, a generic device driver may be dynamically
configured at run-time to communicate with devices of a
particular device type and/or device parameters may be 40

associated with a service and communicated to the device
driver. These device parameters that are associated with a
particular service and then passed to the device driver may
allow the device driver to collect data from a particular
device that is relevant to a particular service offering. 45

Although this invention allows ultra flexible access to and
configuration of devices it requires the lower level compo
nents to be recognized and accessible by the HAL before the
methods can come into operation.

u.s. Pat. No. 7,275,118 shows an input/output (I/O) 50

device driver loading method for a data processing system
that involves communication of a secondary I/O device
driver to a data processing system using a primary I/O
device driver. An initial (first) device identification infor
mation is passed from the peripheral device to the data 55

processing system. This first device identification infonna
tion corresponds to a first I/O device driver in the data
processing system. By utilizing the invention the device then
transmits a second I/O device driver from the peripheral
device to the data processing system using the first I/O 60

device driver in the data processing system. A second device
identification information is then passed from the peripheral
device to the data processing system. Although this method
allows the use of simplified generic device class drivers to
establish an initial communication with the data processing 65

system to transmit additional device drivers and device
identification information to the data processing system it

5
US 10,445,258 Bl

6
FIG. 2 is a block diagram showing involved components

when using the invention with Microsoft Windows Operat
ing Systems.

FIG. 3 is a flow chart illustrating a method of creating a
device driver and initializing the setup process in accordance
with the present invention.

FIG. 4 is a flow chart illustrating a method of ranking a
device driver by the Operating System during the setup
procedure in a trusted system context without user interac
tion.

FIG. 5 is a flow chart illustrating a method of extracting
setup infonnations from a signed device driver and initial
izing the setup process for creation of a device object in
accordance with the present invention.

FIG. 6 is a flow chart illustrating a method of binding a
physical device to a previously generated device object for
a signed driver in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

In order to avoid confusion often present in the world of
electronic devices jargon, for purposes of the present inven
tion, the following tenn shall have the meaning set forth
below: "BUS" shall mean any device to which other physi
cal, logical, or virtual devices are attached; a bus includes
traditional buses such as SCSI and PCI, as well as parallel
ports, serial ports, and i8042 ports.

The invention may be more vividly described with refer
ence to FIGS. 1-3. FIG. 1 is a schematic diagram of a
conventional digital electronic device that can be used to
implement various aspects of the invention. When a new
peripheral device 109 is connected to a peripheral device
interface 110 or a peripheral bus 108 that is connected to the
system bus 105 by a peripheral bus interface 107, the
electronic device 100 detects the presence of the connected
peripheral device and a configuration process (e.g., enu
meration) begins. An enumeration process assigns a unique
address to the connected peripheral device, queries the
connected peripheral device about requirements and capa
bilities, writes data about the connected peripheral device to
the OS 102 ofthe electronic device and loads the appropriate
software device driver from a non volatile memory into the
OS.

The device driver is a program that allows the OS and
application programs 103 to communicate correctly with the
peripheral device, provides infonnation to the electronic
devices operating system about the peripheral device and
allows transfer ofprogram data 104 to the peripheral device.

FIG. 3 is a flow chart illustrating a method of creating a
device driver and initializing the setup process in accordance
with the present invention. Initially the present invention
collects information's 301 about a desired device and creates
an appropriate setup infonnation file 304 for the device. This
may either be done by extracting installation infonnation
from an existing device or by utilizing a prebuilt setup
information file. Setup infonnation is stored in a plain text
file. The plain text file is divided into sections that contain
information's about the peripheral device's capabilities,
dependencies and requirements. During the setup process
the OS loads the setup infonnation file into volatile memory,
identifies the sections, reads the content of each section and
writes entries to the registry, the configuration database of
the electronic device. Instead of making changes to the
configuration database of the electronic device the invention
uses this method to build a temporary data structure that is
required to perfonn the following steps. The temporary data

structure may be held in volatile memory such as a random
access memory or be stored to non volatile memory such as
a physical storage device. As the OS searches and selects the
appropriate setup infonnation file for a peripheral device by
comparing the class and the device id of the peripheral
device with the class and the device id stored in the setup
information file changes of the contents of the data structure
are necessary to create a setup information file that fits to the
peripheral device. The device id of the extracted or prebuilt

10 setup information file stored in the temporary data structure
is exchanged with the device id 300 of the physical periph
eral device that should finally be plugged into the peripheral
bus. This may either be done by user input or by reading a
plain text file which is supplied with the peripheral device

15 and just contains the device id. The content of the modified
data structure is used to build the setup infonnation file 304
for the new device. This setup infonnation file is stored to a
location were the electronic device expects to find such
information.

20 In the next step, the temporary data structure is used to
create a data structure 305 that is needed to initialize the
setup process for the new device without the need for the
physical device to be plugged into the peripheral bus or
interface of the electronic device. As the bus driver of a

25 peripheral bus is accessible and accepts configuration
requests from either the peripheral bus or the system bus the
configuration request can be fonned from the content of the
temporary data structure. The request can be built and sent
by either an application upon user request or a generic multi

30 purpose device driver or service that automatically starts
when the creation ofthe temporary data structure is finished.
The data structure sent to the bus driver contains at least the
request to add a new device, the class and the device id both
taken from the temporary data structure. The class and the

35 device id allow the proper selection of the setup infonnation
file built in the prior step. Reception of this data structure at
the peripheral bus driver causes the function driver for the
bus device to determine that a new device is on its bus. FIG.
2 is a block diagram showing involved components when

40 using the invention with Microsoft Windows Operating
Systems. Passing the data structure to the peripheral bus
driver 202 causes actions that are similar to plug a peripheral
device 200 into the peripheral bus 20l.

If the data structure passed to the peripheral bus driver
45 contains a notification flag and the bus supports hot-plug

notification, the method may be applied while the system is
running. Now the peripheral device is enumerated. The bus
driver 202, targeted by the data structure, receives the
hot-plug notification flag of the new device. The bus driver

50 notifies the kernel-mode PnP manager 203 that the list of
devices on the bus has changed. In this case, the change is
a new device on the bus. The kernel-mode PnP manager
queries the bus driver for a list of devices present on the bus
by sending a query for Bus Relations. The bus driver

55 responds to the query with a current list of devices on the
bus. The kernel-mode PnP manager compares the new list
against the previous list and, in this case, detennines that
there is one new device on the bus.

The kernel-mode PnP manager sends queries to the bus
60 driver to gather information about the new device, such as

the device's hardware IDs, compatible IDs, and device
capabilities. The kernel-mode PnP manager notifies the
user-mode PnP manager 204 that there is a device to be
installed. The user-mode PnP manager tries to perfonn a

65 trusted installation. As the data structure passed to the
peripheral bus driver was generated from the setup infor
mation file and the setup information file is stored at a

7
US 10,445,258 Bl

8
location were the electronic device expects the infonnation
a server side installation can be performed. The user-mode
PnP manager creates a new process using rund1l32.exe and
launches newdev.dll 205 to install the device.

The new device DLL calls setup API 206 device instal
lation functions and CfgMgr API 207 PUP configuration
manager functions to carry out its installation tasks. The new
device DLL queries the system to build a list of possible
drivers for the device. As the setup infonnation file stored in
the previous steps is available on the system and matches the
new device, the returned driver list contains the required
driver.

Setup uses the Class and ClassGUID entries in the
device's INF Version section to detennine the device setup
class. The setup class detennines the class installer and the
class co-installers for the device, if any. Device-specific
co-installers are listed in the appropriate INF section. Setup
transfers control to kernel mode to load drivers and start the
device.

Once Setup has selected the driver for the device, copied
the appropriate driver files, registered any device-specific
co-installers, and registered any device interfaces, it trans
fers control to kernel mode to load the drivers and try to start
the device. The appropriate CfgMgr function sends a request
to the user-mode PUP manager, which passes it to the
kernel-mode PUP manager. The PnP manager loads the
appropriate function driver 210 and any optional filter driver
211 for the device.

The PnP manager calls the Driver Entry routine for any
required driver that is not yet loaded. The PUP manager then
calls the AddDevice routine for each driver, starting with
lowerfilter drivers, then the function driver, and, lastly, any
upper filter drivers. The PnP manager assigns resources to
the device, if required, and sends a start request to the
device's drivers.

After finishing these steps the physical existent peripheral
device may be plugged into the peripheral bus. As this
device sends a hot-plug notification and its device class and
device id fits to the driver installed by the data structure the
electronic device assumes that the peripheral device is
plugged in and starts it.

As the previously described steps of the present invention
alter parts of the initial existent driver package for installa
tion of signed drivers a different approach is needed. If the
Operating system detects that at least one file in the signed
driver package has been altered since the package was
signed it categorizes the drivers as altered. This makes it
impossible to perform the desired device installation that can
be handled entirely by the Operating System's user-mode
and kernel-mode PnP manager components. In such case, for
non-administrative and standard users, the Operating Sys
tem does not prompt the user. It would only automatically
install a driver signed by a signing authority but silently
refuses to install the altered driver. In some operating
systems, in order for a user to access specific content such
as HD DVD and other licensed formats, all kernel-mode
components on his system must be signed. That means that,
if the user tries to install the altered driver, the system is not
allowed to play the licensed content.

FIG. 4 is a flow chart illustrating a method of ranking a
device driver by the Operating System during the setup
procedure in a trusted system context without user interac
tion. Initially, the Kernel Mode Plug and Play Manager
sends an I/O Request Packet 400 to the Bus Driver. The Bus
driver responds 401 to the request by sending in the Hard
ware and Compatible IDs 402. Based on this information the
setup process queries 403 the Operating Systems driver store

or a location where the Operating System expects drivers,
such as an INF directory, for matching drivers. If Matching
drivers are found 404 they are added to a driver list 405. If
the setup process caunot find a matching driver it exits
unattended setup mode 406. If drivers are found the setup
process compares the content of the setup infonnation files
407 to the device identification strings received in step 404
and builds a driver list with rank indicators 408.

As described in the previous steps the Operating System
10 does not directly interact with hardware. Instead, every piece

of hardware is represented by a device object that receives
all In- and Output from the Operating System. To success
fully use the invention with signed drivers a device object
for the device expected by the unmodified signed driver in

15 the Operating System has to be created and, in later steps,
bound to the physical existent device that is not attached to
the electronic device when the required device object is
created.

To successfully collect all necessary data for creating the
20 new device object the setup infonnation file sections of the

signed driver and its content are read 500 into a temporary
data structure. As already described the creation of the
device object is initialized by sending 501 a hot plug
notification to the bus driver. The reception of the notifica-

25 tion causes the bus driver to notify 502 the Kernel Plug and
Play Manager that the list of devices on the bus has changed.

The Kernel Plug and Play Manager sends 503 I/O Request
Packets (IRP) to the bus driver to gather informations about
the new device. As the bus driver is able to receive com-

30 mands and data input from the Operating System or an
application program and there is no physical device attached
to the bus at this point the Plug and Play managers IRP's are
answered by sending 504 the previously collected data from
the signed device driver in form of strings to the Plug and

35 Play manager via the bus driver that adds, due to the
reception of the hot plug notification, some of the required
informations like the bus devices ID, bus instance ID or bus
container ID. Hardware specific infonnation like the devices
hardware ID or its compatible ID are taken from the setup

40 information file. The Kernel Mode Plug and Play manager
then notifies 505 the User Mode Plug and Play manager that
there is a new device to be installed.

Next a routine to add a device object is started. To build
the required parameters this routine uses the infonnation

45 collected in the previous step. The routine is responsible for
creating the functional device object 210 or filter device
object 211 for the device. The routine contains a pointer to
the driver object structure which is the devices signed driver
object and a pointer to the physical device object created by

50 the lower level driver.
As simple reading from a file in the driver package does

not alter the package the required infonnation to create the
appropriate pointers for the routine to add the device object
for the expected device is read from the signed driver before

55 the routine is started. The routine contains a pointer to the
signed driver and a pointer to the newly arrived physical
device object created in the previous steps by the Plug and
Play manager.

This routine to add the device calls two other routines that
60 create the device object for use of the signed driver and

attach the device to the highest device object in the chain and
return a pointer to the previously highest device object. In
addition to a pointer to the driver object the first routine
contains the driver-detennined number of bytes to be allo-

65 cated for the device extension of the device object, the
device type, it's characteristics, infonnation about the
devices exclusive access properties and a pointer to a

US 10,445,258 Bl
9

variable that receives a pointer to the newly created device
object structure. As all infonnation needed by this routine is
taken from the signed device driver installation package
various device types can be easily installed, including but
not limited to:

Battery devices and UPS devices, biometric-based per
sonal identification devices and Bluetooth devices. CD
ROM drives, including SCSI CD-ROM drives. In this case,
the Operating System's CD-ROM class installer also installs
a system-supplied CD audio driver and CD-ROM changer 10

driver, a Plug and Play filter driver. Disk Drives including
hard disk drives, display adapters, video adapters, display
drivers and video miniport drivers. Floppy disk Controllers
and floppy disk drive controllers.

Hard disk controllers, including ATAIATAPI controllers. 15

Human Interface Devices (HID) including interactive input
devices that are operated by the system-supplied HID class
driver, which includes USB devices that comply with the
USB HID Standard and non-USB devices that use a HID
minidriver. IEEE 1284.4 devices that control the operation 20

of multifunction IEEE 1284.4 peripheral devices. IEEE
1284.4 print functions on a Dot4 device that has a single
child device, which is a member of the printer device setup
class. IEEE 1394 devices that support the 61883 protocol
including the 61883.sys protocol driver that transmits vari- 25

ous audio and video data streams over the 1394 bus,
including quality DY, MPEG2, DSS, and Audio. IEEE 1394
devices that support the AVC protocol device class. IEEE
1394 devices that support the SBP2 protocol device class.
IEEE 1394 host controllers connected on a PCI bus. Imaging 30

devices including still-image capture devices, digital cam
eras, and scanners. IrDA devices including serial-IR and
fast-IR NDIS miniports. Keyboards also specified in the
(secondary) INF for an enumerated child HID keyboard
device. Media changers including SCSI media changer 35

devices. Memory technology drivers including memory
devices, such as flash memory cards. Modems and display
monitors. An setup information file for a device of this class
installs no device driver, but rather specifies the features of
a particular monitor to be stored in the registry for use by 40

drivers of video adapters. Mouse devices and other kinds of
pointing devices, such as trackballs also specified in the
(secondary) INF for an enumerated child HID mouse device.
Multifunction Devices including combo cards, such as a
PCMCIA modem and netcard adapter. The driver for such a 45

Plug and Play multifunction device is installed under this
class and enumerates the modem and netcard separately as
its child devices. Multimedia devices including Audio and
DVD multimedia devices, joystick ports, and full-motion
video capture devices. Multiport serial adapters including 50

intelligent multiport serial cards. Network adapters includ
ing NDIS NIC miniport drivers. Network clients including
network and/or print providers. Network services such as
redirectors and servers. Network transports including NDIS
protocols, CoNDIS stand-alone call managers, and CoNDIS 55

clients, as well as higher level drivers in transport stacks.
PCI SSL accelerator devices that accelerate secure socket
layer (SSL) cryptographic processing. PCMCIA adapters
including CardBus host controllers. Ports (COM & LPT
ports) including serial and parallel port devices. Printers and 60

bus-specific class drivers including SCSI/1394-enumerated
printers. Processors, SCSI and RAID controllers including
SCSI HBAs (Host Bus Adapters) and disk-array controllers.
Smart Card readers and storage volumes including storage
volumes as defined by the system-supplied logical volume 65

manager and class drivers that create device objects to
represent storage volumes, such as the system disk class

10
driver. System Devices, including HALs, system buses,
system bridges, the system ACPI driver, and the system
volume manager driver. Tape drives, including all tape
miniclass drivers. USB host controllers and USB hubs.
Windows CE USB ActiveSync devices that support com
munication between a personal computer and a device that
is compatible with the Windows CE ActiveSync driver
(generally, PocketPC devices) over USB.

The second routine attaches the device to the highest
device object in the chain (if any) and returns a pointer to the
previously highest device object. the routine contains a
pointer to the previously created device object and a pointer
to another driver's device object, such as a pointer returned
by a preceding call to a routine that returns a pointer to the
top object in the named device object's stack.

Due to the fact, that the physical device identification
expected by the signed driver is read from the driver and sent
to the User Mode Plug and Play Manager a trusted ("server
side") silent installation can be performed.

Initially the device object is installed but due to the fact
that there is no device plugged into the bus, not started. As
the physical existent peripheral device that was used with
unsigned drivers, when plugged into the bus, does not send
a hotplug notification or other notifications that would
initialize an enumeration process additional steps are
required to bind the physical device to the device object
created in the previous steps in case a signed driver should
or has to be used.

To allow binding of a physical device that has no signed
drivers but should be used with such drivers the hardware
device 600 has to have non volatile memory 601 that
provides read- and writeable access to an application pro
gram. To allow access and configuration, initially the non
volatile memory of the device is progranlilled to send out a
hot plug notification 602 and identification infonnations 603
for a simple generic device. Non signed drivers for such
devices are available and may be silently installed on most
common electronic devices. To bind this physical device to
the existing but inactive Operating Systems device object
604 for the signed driver package the bus specific informa
tions bus devices ID, bus instance ID and bus container ID
605 for the device object are queried by sending I/O Request
Packets to the bus driver 606. Due to the fact that the
Operating Systems device object is already installed but not
active the Bus relations for this device are known and its
Hardware and Compatible ID 606 can be queried, transmit
ted to and stored in the physical devices non volatile
memory. The next time the peripheral device is plugged into
the peripheral bus the devices notifications fit to the previ
ously installed Operation System's device object. As the
device is already installed it can be used without any further
installation steps or user interaction, it just appears as
switched ON. The Operating System performs all I/O
requests to the Operation Systems device object which is
now bound to the physical device.

Although the invention has been described in relation to
preferred embodiments, many variations, equivalents, modi
fications and other uses will become apparent to those
skilled in the art. The scope of the present invention should
not be limited to the specific disclosure but determined only
by the appended claims.

What is claimed is:
1. A method, comprising:
configuring a driver of a peripheral device;

US 10,445,258 Bl

35

11
replacing pre-existing device identification (ID) infonna

tion with a newly created peripheral device ID and
storing the new peripheral device ID in a temporary
data structure;

creating a request message based on the temporary data
structure, the request message comprising a request to
add a new device;

receiving the request message and detennining the new
device is operating on a peripheral bus as a Plug and
Play device; and 10

adding entries to provide Plug and Play functionality prior
to plugging the peripheral device into the peripheral
bus in communication with an electronic device.

2. The method of claim 1, wherein the Plug and Play 15

functionality is generated from a setup infonnation file
wherein a previously existent setup information is stored in
the setup infonnation file.

3. The method of claim 1, wherein existent setup infor
mation is stored in a configuration memory of the electronic
device. 20

4. The method of claim 1, further comprising storing the
new peripheral device ID of the peripheral device.
. 5. The method of claim 1, further comprising passing an
mstance ID to the driver of the peripheral interface or bus to 25
identify an instance of the peripheral device.

6. The method ofclaim 1, wherein the bus is an expansion
bus.

7. The method of claim 1, wherein the bus is a peripheral
bus. 30

8. The method of claim 1, wherein the peripheral device
supports the functionality of multiple devices and the opera
tions of creation of setup infonnation, initialization and
performance of an installation are perfonned for each sup
ported functionality of the multiple devices.

9. An apparatus, comprising:
a memory; and
a processor communicably coupled to the memory, the

processor configured to:
configure a driver of a peripheral device; 40
replace pre-existing device identification (ID) infonnation

in a newly created peripheral device ID and store the
new peripheral device ID in a temporary data structure;

create a request message based on the temporary data
structure, the request message comprising a request to 45

add a new device
receive the request message and detennine the new device

is operational on a peripheral bus as a Plug and Play
device; and

add entries to provide Plug and Play functionality prior to 50

the peripheral device being plugged into the peripheral
bus in communication with the electronic device.

10. The apparatus of claim 9, wherein the Plug and Play
functionality is generated from a setup infonnation file,
wherein a previously existent setup information is stored in
the setup infonnation file.

12
. 11. T~e apparatus ~f claim 9, wherein existent setup
mformatJon IS stored m a configuration memory of the
apparatus.

12. The apparatus of claim 9, wherein the processor is
further configured to pass an instance ID to the driver of the
peripheral interface to identify an instance of the peripheral
devIce.

13. The apparatus of claim 9, wherein the processor is
further configured to pass an instance ID to the driver of the
bus to identify an instance of the peripheral device.

14. The apparatus of claim 9, wherein the bus is an
expansion bus.

15. The apparatus of claim 9, wherein the bus is a
peripheral bus.

16. The apparatus of claim 9, wherein the peripheral
device supports the functionality ofmultiple devices and the
operations of creation of setup infonnation, initialization
and perfonnance of an installation are perfonned for each
supported functionality of the multiple devices.
. 17. A non-transitory computer readable medium compris
mg a computer program that when executed causes a pro
cessor to perform:

configuring a driver of a peripheral device;
replacing pre-existing device identification (ID) infonna

tion with a newly created peripheral device ID and
storing the new peripheral device ID in the temporary
data structure;

creating a request message based on a temporary data
structure, the request message comprising a request to
add a new device;

receiving the request message and detennining the new
device is operating on a peripheral bus as a Plug and
Play device; and

adding entries to provide Plug and Play functionality
generated prior to plugging the peripheral device into
the peripheral bus in communication with an electronic
device.

18. The non-transitory computer readable medium of
claim 17, wherein the processor is further configured to
perfonn creating a device object of the electronic device and
binding the device object to the peripheral device to provide
a signed driver that is used during the installation of the
peripheral device.

19. The non-transitory computer readable medium of
claim 17, wherein the processor is further configured to
perfonn creating a device object of the apparatus and
binding the device object to the peripheral device to provide
a signed driver that is used during the installation of the
peripheral device.

20. The non-transitory computer readable medium of
claim 17, wherein the processor is further configured to
perfonn creating a device object of the electronic device and
binding the device object to the peripheral device to provide
a signed driver that is used during the installation of the
peripheral device.

* * * * *

